summaryrefslogtreecommitdiff
path: root/python-django-silk.spec
blob: 64b52a0611660e4c54753b36f05566a2ae5043da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
%global _empty_manifest_terminate_build 0
Name:		python-django-silk
Version:	5.0.3
Release:	1
Summary:	Silky smooth profiling for the Django Framework
License:	MIT License
URL:		https://github.com/jazzband/django-silk
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/de/e5/36952b83e7de43f0b72a18e6e40912089a875f7986fd4acb0cf47e7d720a/django-silk-5.0.3.tar.gz
BuildArch:	noarch


%description
# Silk

[![GitHub Actions](https://github.com/jazzband/django-silk/workflows/Test/badge.svg)](https://github.com/jazzband/django-silk/actions)
[![GitHub Actions](https://codecov.io/gh/jazzband/django-silk/branch/master/graph/badge.svg)](https://codecov.io/gh/jazzband/django-silk)
[![PyPI Download](https://img.shields.io/pypi/v/django-silk.svg)](https://pypi.python.org/pypi/django-silk)
[![PyPI Python Versions](https://img.shields.io/pypi/pyversions/django-silk.svg)](https://pypi.python.org/pypi/django-silk)
[![Supported Django versions](https://img.shields.io/pypi/djversions/django-silk.svg)](https://pypi.python.org/pypi/django-silk)
[![Jazzband](https://jazzband.co/static/img/badge.svg)](https://jazzband.co/)

Silk is a live profiling and inspection tool for the Django framework. Silk intercepts and stores HTTP requests and database queries before presenting them in a user interface for further inspection:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/1.png" width="720px"/>

## Contents

* [Requirements](#requirements)
* [Installation](#installation)
* [Features](#features)
* [Configuration](#configuration)
  * [Authentication/Authorisation](#authenticationauthorisation)
  * [Request/Response bodies](#requestresponse-bodies)
  * [Meta-Profiling](#meta-profiling)
  * [Recording a fraction of requests](#recording-a-fraction-of-requests)
  * [Limiting request/response data](#limiting-requestresponse-data)
  * [Clearing logged data](#clearing-logged-data)
* [Contributing](#contributing)
  * [Development Environment](#development-environment)

## Requirements

Silk has been tested with:

* Django: 3.2, 4.0, 4.1
* Python: 3.7, 3.8, 3.9, 3.10, 3.11

## Installation

Via pip into a `virtualenv`:

```bash
pip install django-silk
```

In `settings.py` add the following:

```python
MIDDLEWARE = [
    ...
    'silk.middleware.SilkyMiddleware',
    ...
]

INSTALLED_APPS = (
    ...
    'silk'
)
```

**Note:** The middleware placement is sensitive. If the middleware before `silk.middleware.SilkyMiddleware` returns from `process_request` then `SilkyMiddleware` will never get the chance to execute. Therefore you must ensure that any middleware placed before never returns anything from `process_request`. See the [django docs](https://docs.djangoproject.com/en/dev/topics/http/middleware/#process-request) for more information on this.

**Note:** If you are using `django.middleware.gzip.GZipMiddleware`, place that **before** `silk.middleware.SilkyMiddleware`, otherwise you will get an encoding error.

If you want to use custom middleware, for example you developed the subclass of `silk.middleware.SilkyMiddleware`, so you can use this combination of settings:

```python
# Specify the path where is the custom middleware placed
SILKY_MIDDLEWARE_CLASS = 'path.to.your.middleware.MyCustomSilkyMiddleware'

# Use this variable in list of middleware
MIDDLEWARE = [
    ...
    SILKY_MIDDLEWARE_CLASS,
    ...
]
```

To enable access to the user interface add the following to your `urls.py`:

```python
urlpatterns += [path('silk/', include('silk.urls', namespace='silk'))]
```

before running migrate:

```bash
python manage.py migrate

python manage.py collectstatic
```


Silk will automatically begin interception of requests and you can proceed to add profiling
if required. The UI can be reached at `/silk/`

### Alternative Installation

Via [github tags](https://github.com/jazzband/django-silk/releases):

```bash
pip install https://github.com/jazzband/silk/archive/<version>.tar.gz
```

You can install from master using the following, but please be aware that the version in master
may not be working for all versions specified in [requirements](#requirements)

```bash
pip install -e git+https://github.com/jazzband/django-silk.git#egg=django-silk
```

## Features

Silk primarily consists of:

* Middleware for intercepting Requests/Responses
* A wrapper around SQL execution for profiling of database queries
* A context manager/decorator for profiling blocks of code and functions either manually or dynamically.
* A user interface for inspection and visualisation of the above.

### Request Inspection

The Silk middleware intercepts and stores requests and responses in the configured database.
These requests can then be filtered and inspecting using Silk's UI through the request overview:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/1.png" width="720px"/>

It records things like:

* Time taken
* Num. queries
* Time spent on queries
* Request/Response headers
* Request/Response bodies

and so on.

Further details on each request are also available by clicking the relevant request:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/2.png" width="720px"/>

### SQL Inspection

Silk also intercepts SQL queries that are generated by each request. We can get a summary on things like
the tables involved, number of joins and execution time (the table can be sorted by clicking on a column header):

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/3.png" width="720px"/>

Before diving into the stack trace to figure out where this request is coming from:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/5.png" width="720px"/>

### Profiling

Turn on the SILKY_PYTHON_PROFILER setting to use Python's built-in cProfile profiler. Each request will be separately profiled and the profiler's output will be available on the request's Profiling page in the Silk UI.

```python
SILKY_PYTHON_PROFILER = True
```

If you would like to also generate a binary `.prof` file set the following:

```python
SILKY_PYTHON_PROFILER_BINARY = True
```

When enabled, a graph visualisation generated using [gprof2dot](https://github.com/jrfonseca/gprof2dot) and [viz.js](https://github.com/almende/vis) is shown in the profile detail page:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/10.png" width="720px"/>


A custom storage class can be used for the saved generated binary `.prof` files:

```python
SILKY_STORAGE_CLASS = 'path.to.StorageClass'
```

The default storage class is `silk.storage.ProfilerResultStorage`, and when using that you can specify a path of your choosing. You must ensure the specified directory exists.

```python
# If this is not set, MEDIA_ROOT will be used.
SILKY_PYTHON_PROFILER_RESULT_PATH = '/path/to/profiles/'
```

A download button will become available with a binary `.prof` file for every request. This file can be used for further analysis using [snakeviz](https://github.com/jiffyclub/snakeviz) or other cProfile tools


Silk can also be used to profile specific blocks of code/functions. It provides a decorator and a context
manager for this purpose.

For example:

```python
from silk.profiling.profiler import silk_profile


@silk_profile(name='View Blog Post')
def post(request, post_id):
    p = Post.objects.get(pk=post_id)
    return render(request, 'post.html', {
        'post': p
    })
```

Whenever a blog post is viewed we get an entry within the Silk UI:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/7.png" width="720px"/>

Silk profiling not only provides execution time, but also collects SQL queries executed within the block in the same fashion as with requests:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/8.png" width="720px"/>

#### Decorator

The silk decorator can be applied to both functions and methods

```python
from silk.profiling.profiler import silk_profile


# Profile a view function
@silk_profile(name='View Blog Post')
def post(request, post_id):
    p = Post.objects.get(pk=post_id)
    return render(request, 'post.html', {
        'post': p
    })


# Profile a method in a view class
class MyView(View):
    @silk_profile(name='View Blog Post')
    def get(self, request):
        p = Post.objects.get(pk=post_id)
        return render(request, 'post.html', {
            'post': p
        })
```

#### Context Manager

Using a context manager means we can add additional context to the name which can be useful for
narrowing down slowness to particular database records.

```python
def post(request, post_id):
    with silk_profile(name='View Blog Post #%d' % self.pk):
        p = Post.objects.get(pk=post_id)
        return render(request, 'post.html', {
            'post': p
        })
```

#### Dynamic Profiling

One of Silk's more interesting features is dynamic profiling. If for example we wanted to profile a function in a dependency to which we only have read-only access (e.g. system python libraries owned by root) we can add the following to `settings.py` to apply a decorator at runtime:

```python
SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'MyClass.bar'
}]
```

which is roughly equivalent to:

```python
class MyClass:
    @silk_profile()
    def bar(self):
        pass
```

The below summarizes the possibilities:

```python

"""
Dynamic function decorator
"""

SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'foo'
}]

# ... is roughly equivalent to
@silk_profile()
def foo():
    pass

"""
Dynamic method decorator
"""

SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'MyClass.bar'
}]

# ... is roughly equivalent to
class MyClass:

    @silk_profile()
    def bar(self):
        pass

"""
Dynamic code block profiling
"""

SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'foo',
    # Line numbers are relative to the function as opposed to the file in which it resides
    'start_line': 1,
    'end_line': 2,
    'name': 'Slow Foo'
}]

# ... is roughly equivalent to
def foo():
    with silk_profile(name='Slow Foo'):
        print (1)
        print (2)
    print(3)
    print(4)
```

Note that dynamic profiling behaves in a similar fashion to that of the python mock framework in that
we modify the function in-place e.g:

```python
""" my.module """
from another.module import foo

# ...do some stuff
foo()
# ...do some other stuff
```

,we would profile `foo` by dynamically decorating `my.module.foo` as opposed to `another.module.foo`:

```python
SILKY_DYNAMIC_PROFILING = [{
    'module': 'my.module',
    'function': 'foo'
}]
```

If we were to apply the dynamic profile to the functions source module `another.module.foo` **after**
it has already been imported, no profiling would be triggered.


#### Custom Logic for Profiling

Sometimes you may want to dynamically control when the profiler runs. You can write your own logic for when to enable the profiler. To do this add the following to your `settings.py`:

This setting is mutually exclusive with SILKY_PYTHON_PROFILER and will be used over it if present. It will work with SILKY_DYNAMIC_PROFILING.

```python
def my_custom_logic(request):
    return 'profile_requests' in request.session

SILKY_PYTHON_PROFILER_FUNC = my_custom_logic # profile only session has recording enabled.
```

You can also use a `lambda`.

```python
# profile only session has recording enabled.
SILKY_PYTHON_PROFILER_FUNC = lambda request: 'profile_requests' in request.session
```

### Code Generation

Silk currently generates two bits of code per request:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/9.png" width="720px"/>

Both are intended for use in replaying the request. The curl command can be used to replay via command-line and the python code can be used within a Django unit test or simply as a standalone script.

## Configuration

### Authentication/Authorisation

By default anybody can access the Silk user interface by heading to `/silk/`. To enable your Django
auth backend place the following in `settings.py`:

```python
SILKY_AUTHENTICATION = True  # User must login
SILKY_AUTHORISATION = True  # User must have permissions
```

If `SILKY_AUTHORISATION` is `True`, by default Silk will only authorise users with `is_staff` attribute set to `True`.

You can customise this using the following in `settings.py`:

```python
def my_custom_perms(user):
    return user.is_allowed_to_use_silk

SILKY_PERMISSIONS = my_custom_perms
```

You can also use a `lambda`.

```python
SILKY_PERMISSIONS = lambda user: user.is_superuser
```

### Request/Response bodies

By default, Silk will save down the request and response bodies for each request for future viewing
no matter how large. If Silk is used in production under heavy volume with large bodies this can have
a huge impact on space/time performance. This behaviour can be configured with the following options:

```python
SILKY_MAX_REQUEST_BODY_SIZE = -1  # Silk takes anything <0 as no limit
SILKY_MAX_RESPONSE_BODY_SIZE = 1024  # If response body>1024 bytes, ignore
```

### Meta-Profiling

Sometimes it is useful to be able to see what effect Silk is having on the request/response time. To do this add
the following to your `settings.py`:

```python
SILKY_META = True
```

Silk will then record how long it takes to save everything down to the database at the end of each
request:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/meta.png"/>

Note that in the above screenshot, this means that the request took 29ms (22ms from Django and 7ms from Silk)

### Recording a Fraction of Requests

On high-load sites it may be helpful to only record a fraction of the requests that are made. To do this add the following to your `settings.py`:

Note: This setting is mutually exclusive with SILKY_INTERCEPT_FUNC.

```python
SILKY_INTERCEPT_PERCENT = 50 # log only 50% of requests
```

#### Custom Logic for Recording Requests

On high-load sites it may also be helpful to write your own logic for when to intercept requests. To do this add the following to your `settings.py`:

Note: This setting is mutually exclusive with SILKY_INTERCEPT_PERCENT.

```python
def my_custom_logic(request):
    return 'record_requests' in request.session

SILKY_INTERCEPT_FUNC = my_custom_logic # log only session has recording enabled.
```

You can also use a `lambda`.

```python
# log only session has recording enabled.
SILKY_INTERCEPT_FUNC = lambda request: 'record_requests' in request.session
```

### Limiting request/response data

To make sure silky garbage collects old request/response data, a config var can be set to limit the number of request/response rows it stores.

```python
SILKY_MAX_RECORDED_REQUESTS = 10**4
```

The garbage collection is only run on a percentage of requests to reduce overhead.  It can be adjusted with this config:

```python
SILKY_MAX_RECORDED_REQUESTS_CHECK_PERCENT = 10
```

In case you want decouple silk's garbage collection from your webserver's request processing, set SILKY_MAX_RECORDED_REQUESTS_CHECK_PERCENT=0 and trigger it manually, e.g. in a cron job:

```bash
python manage.py silk_request_garbage_collect
```

### Enable query analysis

To enable query analysis when supported by the dbms a config var can be set in order to execute queries with the analyze features.

```python
SILKY_ANALYZE_QUERIES = True
```

**Warning:** This setting may cause the database to execute the same query twice, depending on the backend. For instance, `EXPLAIN ANALYZE` in Postgres will [actually execute the query](https://www.postgresql.org/docs/current/sql-explain.html), which may result in unexpected data updates. Set this to True with caution.

To pass additional params for profiling when supported by the dbms (e.g. VERBOSE, FORMAT JSON), you can do this in the following manner.

```python
SILKY_EXPLAIN_FLAGS = {'format':'JSON', 'costs': True}
```


### Masking sensitive data on request body

By default, Silk is filtering values that contains the following keys (they are case insensitive)

```python
SILKY_SENSITIVE_KEYS = {'username', 'api', 'token', 'key', 'secret', 'password', 'signature'}
```

But sometimes, you might want to have your own sensitive keywords, then above configuration can be modified

```python
SILKY_SENSITIVE_KEYS = {'custom-password'}
```


### Clearing logged data

A management command will wipe out all logged data:

```bash
python manage.py silk_clear_request_log
```

## Contributing

[![Jazzband](https://jazzband.co/static/img/jazzband.svg)](https://jazzband.co/)

This is a [Jazzband](https://jazzband.co/) project. By contributing you agree to abide by the [Contributor Code of Conduct](https://jazzband.co/about/conduct) and follow the [guidelines](https://jazzband.co/about/guidelines).

### Development Environment

Silk features a project named `project` that can be used for `silk` development. It has the `silk` code symlinked so
you can work on the sample `project` and on the `silk` package at the same time.

In order to setup local development you should first install all the dependencies for the test `project`. From the
root of the `project` directory:

```bash
pip install -r requirements.txt
```

You will also need to install `silk`'s dependencies. From the root of the git repository:

```bash
pip install -e .
```

At this point your virtual environment should have everything it needs to run both the sample `project` and
`silk` successfully.

Before running, you must set the `DB_ENGINE` and `DB_NAME` environment variables:

```bash
export DB_ENGINE=sqlite3
export DB_NAME=db.sqlite3
```

For other combinations, check [`tox.ini`](./tox.ini).

Now from the root of the sample `project` apply the migrations

```bash
python manage.py migrate
```

Now from the root of the sample `project` directory start the django server

```bash
python manage.py runserver
```

#### Running the tests

```bash
cd project
python manage.py test
```

Happy profiling!


%package -n python3-django-silk
Summary:	Silky smooth profiling for the Django Framework
Provides:	python-django-silk
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-django-silk
# Silk

[![GitHub Actions](https://github.com/jazzband/django-silk/workflows/Test/badge.svg)](https://github.com/jazzband/django-silk/actions)
[![GitHub Actions](https://codecov.io/gh/jazzband/django-silk/branch/master/graph/badge.svg)](https://codecov.io/gh/jazzband/django-silk)
[![PyPI Download](https://img.shields.io/pypi/v/django-silk.svg)](https://pypi.python.org/pypi/django-silk)
[![PyPI Python Versions](https://img.shields.io/pypi/pyversions/django-silk.svg)](https://pypi.python.org/pypi/django-silk)
[![Supported Django versions](https://img.shields.io/pypi/djversions/django-silk.svg)](https://pypi.python.org/pypi/django-silk)
[![Jazzband](https://jazzband.co/static/img/badge.svg)](https://jazzband.co/)

Silk is a live profiling and inspection tool for the Django framework. Silk intercepts and stores HTTP requests and database queries before presenting them in a user interface for further inspection:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/1.png" width="720px"/>

## Contents

* [Requirements](#requirements)
* [Installation](#installation)
* [Features](#features)
* [Configuration](#configuration)
  * [Authentication/Authorisation](#authenticationauthorisation)
  * [Request/Response bodies](#requestresponse-bodies)
  * [Meta-Profiling](#meta-profiling)
  * [Recording a fraction of requests](#recording-a-fraction-of-requests)
  * [Limiting request/response data](#limiting-requestresponse-data)
  * [Clearing logged data](#clearing-logged-data)
* [Contributing](#contributing)
  * [Development Environment](#development-environment)

## Requirements

Silk has been tested with:

* Django: 3.2, 4.0, 4.1
* Python: 3.7, 3.8, 3.9, 3.10, 3.11

## Installation

Via pip into a `virtualenv`:

```bash
pip install django-silk
```

In `settings.py` add the following:

```python
MIDDLEWARE = [
    ...
    'silk.middleware.SilkyMiddleware',
    ...
]

INSTALLED_APPS = (
    ...
    'silk'
)
```

**Note:** The middleware placement is sensitive. If the middleware before `silk.middleware.SilkyMiddleware` returns from `process_request` then `SilkyMiddleware` will never get the chance to execute. Therefore you must ensure that any middleware placed before never returns anything from `process_request`. See the [django docs](https://docs.djangoproject.com/en/dev/topics/http/middleware/#process-request) for more information on this.

**Note:** If you are using `django.middleware.gzip.GZipMiddleware`, place that **before** `silk.middleware.SilkyMiddleware`, otherwise you will get an encoding error.

If you want to use custom middleware, for example you developed the subclass of `silk.middleware.SilkyMiddleware`, so you can use this combination of settings:

```python
# Specify the path where is the custom middleware placed
SILKY_MIDDLEWARE_CLASS = 'path.to.your.middleware.MyCustomSilkyMiddleware'

# Use this variable in list of middleware
MIDDLEWARE = [
    ...
    SILKY_MIDDLEWARE_CLASS,
    ...
]
```

To enable access to the user interface add the following to your `urls.py`:

```python
urlpatterns += [path('silk/', include('silk.urls', namespace='silk'))]
```

before running migrate:

```bash
python manage.py migrate

python manage.py collectstatic
```


Silk will automatically begin interception of requests and you can proceed to add profiling
if required. The UI can be reached at `/silk/`

### Alternative Installation

Via [github tags](https://github.com/jazzband/django-silk/releases):

```bash
pip install https://github.com/jazzband/silk/archive/<version>.tar.gz
```

You can install from master using the following, but please be aware that the version in master
may not be working for all versions specified in [requirements](#requirements)

```bash
pip install -e git+https://github.com/jazzband/django-silk.git#egg=django-silk
```

## Features

Silk primarily consists of:

* Middleware for intercepting Requests/Responses
* A wrapper around SQL execution for profiling of database queries
* A context manager/decorator for profiling blocks of code and functions either manually or dynamically.
* A user interface for inspection and visualisation of the above.

### Request Inspection

The Silk middleware intercepts and stores requests and responses in the configured database.
These requests can then be filtered and inspecting using Silk's UI through the request overview:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/1.png" width="720px"/>

It records things like:

* Time taken
* Num. queries
* Time spent on queries
* Request/Response headers
* Request/Response bodies

and so on.

Further details on each request are also available by clicking the relevant request:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/2.png" width="720px"/>

### SQL Inspection

Silk also intercepts SQL queries that are generated by each request. We can get a summary on things like
the tables involved, number of joins and execution time (the table can be sorted by clicking on a column header):

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/3.png" width="720px"/>

Before diving into the stack trace to figure out where this request is coming from:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/5.png" width="720px"/>

### Profiling

Turn on the SILKY_PYTHON_PROFILER setting to use Python's built-in cProfile profiler. Each request will be separately profiled and the profiler's output will be available on the request's Profiling page in the Silk UI.

```python
SILKY_PYTHON_PROFILER = True
```

If you would like to also generate a binary `.prof` file set the following:

```python
SILKY_PYTHON_PROFILER_BINARY = True
```

When enabled, a graph visualisation generated using [gprof2dot](https://github.com/jrfonseca/gprof2dot) and [viz.js](https://github.com/almende/vis) is shown in the profile detail page:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/10.png" width="720px"/>


A custom storage class can be used for the saved generated binary `.prof` files:

```python
SILKY_STORAGE_CLASS = 'path.to.StorageClass'
```

The default storage class is `silk.storage.ProfilerResultStorage`, and when using that you can specify a path of your choosing. You must ensure the specified directory exists.

```python
# If this is not set, MEDIA_ROOT will be used.
SILKY_PYTHON_PROFILER_RESULT_PATH = '/path/to/profiles/'
```

A download button will become available with a binary `.prof` file for every request. This file can be used for further analysis using [snakeviz](https://github.com/jiffyclub/snakeviz) or other cProfile tools


Silk can also be used to profile specific blocks of code/functions. It provides a decorator and a context
manager for this purpose.

For example:

```python
from silk.profiling.profiler import silk_profile


@silk_profile(name='View Blog Post')
def post(request, post_id):
    p = Post.objects.get(pk=post_id)
    return render(request, 'post.html', {
        'post': p
    })
```

Whenever a blog post is viewed we get an entry within the Silk UI:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/7.png" width="720px"/>

Silk profiling not only provides execution time, but also collects SQL queries executed within the block in the same fashion as with requests:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/8.png" width="720px"/>

#### Decorator

The silk decorator can be applied to both functions and methods

```python
from silk.profiling.profiler import silk_profile


# Profile a view function
@silk_profile(name='View Blog Post')
def post(request, post_id):
    p = Post.objects.get(pk=post_id)
    return render(request, 'post.html', {
        'post': p
    })


# Profile a method in a view class
class MyView(View):
    @silk_profile(name='View Blog Post')
    def get(self, request):
        p = Post.objects.get(pk=post_id)
        return render(request, 'post.html', {
            'post': p
        })
```

#### Context Manager

Using a context manager means we can add additional context to the name which can be useful for
narrowing down slowness to particular database records.

```python
def post(request, post_id):
    with silk_profile(name='View Blog Post #%d' % self.pk):
        p = Post.objects.get(pk=post_id)
        return render(request, 'post.html', {
            'post': p
        })
```

#### Dynamic Profiling

One of Silk's more interesting features is dynamic profiling. If for example we wanted to profile a function in a dependency to which we only have read-only access (e.g. system python libraries owned by root) we can add the following to `settings.py` to apply a decorator at runtime:

```python
SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'MyClass.bar'
}]
```

which is roughly equivalent to:

```python
class MyClass:
    @silk_profile()
    def bar(self):
        pass
```

The below summarizes the possibilities:

```python

"""
Dynamic function decorator
"""

SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'foo'
}]

# ... is roughly equivalent to
@silk_profile()
def foo():
    pass

"""
Dynamic method decorator
"""

SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'MyClass.bar'
}]

# ... is roughly equivalent to
class MyClass:

    @silk_profile()
    def bar(self):
        pass

"""
Dynamic code block profiling
"""

SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'foo',
    # Line numbers are relative to the function as opposed to the file in which it resides
    'start_line': 1,
    'end_line': 2,
    'name': 'Slow Foo'
}]

# ... is roughly equivalent to
def foo():
    with silk_profile(name='Slow Foo'):
        print (1)
        print (2)
    print(3)
    print(4)
```

Note that dynamic profiling behaves in a similar fashion to that of the python mock framework in that
we modify the function in-place e.g:

```python
""" my.module """
from another.module import foo

# ...do some stuff
foo()
# ...do some other stuff
```

,we would profile `foo` by dynamically decorating `my.module.foo` as opposed to `another.module.foo`:

```python
SILKY_DYNAMIC_PROFILING = [{
    'module': 'my.module',
    'function': 'foo'
}]
```

If we were to apply the dynamic profile to the functions source module `another.module.foo` **after**
it has already been imported, no profiling would be triggered.


#### Custom Logic for Profiling

Sometimes you may want to dynamically control when the profiler runs. You can write your own logic for when to enable the profiler. To do this add the following to your `settings.py`:

This setting is mutually exclusive with SILKY_PYTHON_PROFILER and will be used over it if present. It will work with SILKY_DYNAMIC_PROFILING.

```python
def my_custom_logic(request):
    return 'profile_requests' in request.session

SILKY_PYTHON_PROFILER_FUNC = my_custom_logic # profile only session has recording enabled.
```

You can also use a `lambda`.

```python
# profile only session has recording enabled.
SILKY_PYTHON_PROFILER_FUNC = lambda request: 'profile_requests' in request.session
```

### Code Generation

Silk currently generates two bits of code per request:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/9.png" width="720px"/>

Both are intended for use in replaying the request. The curl command can be used to replay via command-line and the python code can be used within a Django unit test or simply as a standalone script.

## Configuration

### Authentication/Authorisation

By default anybody can access the Silk user interface by heading to `/silk/`. To enable your Django
auth backend place the following in `settings.py`:

```python
SILKY_AUTHENTICATION = True  # User must login
SILKY_AUTHORISATION = True  # User must have permissions
```

If `SILKY_AUTHORISATION` is `True`, by default Silk will only authorise users with `is_staff` attribute set to `True`.

You can customise this using the following in `settings.py`:

```python
def my_custom_perms(user):
    return user.is_allowed_to_use_silk

SILKY_PERMISSIONS = my_custom_perms
```

You can also use a `lambda`.

```python
SILKY_PERMISSIONS = lambda user: user.is_superuser
```

### Request/Response bodies

By default, Silk will save down the request and response bodies for each request for future viewing
no matter how large. If Silk is used in production under heavy volume with large bodies this can have
a huge impact on space/time performance. This behaviour can be configured with the following options:

```python
SILKY_MAX_REQUEST_BODY_SIZE = -1  # Silk takes anything <0 as no limit
SILKY_MAX_RESPONSE_BODY_SIZE = 1024  # If response body>1024 bytes, ignore
```

### Meta-Profiling

Sometimes it is useful to be able to see what effect Silk is having on the request/response time. To do this add
the following to your `settings.py`:

```python
SILKY_META = True
```

Silk will then record how long it takes to save everything down to the database at the end of each
request:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/meta.png"/>

Note that in the above screenshot, this means that the request took 29ms (22ms from Django and 7ms from Silk)

### Recording a Fraction of Requests

On high-load sites it may be helpful to only record a fraction of the requests that are made. To do this add the following to your `settings.py`:

Note: This setting is mutually exclusive with SILKY_INTERCEPT_FUNC.

```python
SILKY_INTERCEPT_PERCENT = 50 # log only 50% of requests
```

#### Custom Logic for Recording Requests

On high-load sites it may also be helpful to write your own logic for when to intercept requests. To do this add the following to your `settings.py`:

Note: This setting is mutually exclusive with SILKY_INTERCEPT_PERCENT.

```python
def my_custom_logic(request):
    return 'record_requests' in request.session

SILKY_INTERCEPT_FUNC = my_custom_logic # log only session has recording enabled.
```

You can also use a `lambda`.

```python
# log only session has recording enabled.
SILKY_INTERCEPT_FUNC = lambda request: 'record_requests' in request.session
```

### Limiting request/response data

To make sure silky garbage collects old request/response data, a config var can be set to limit the number of request/response rows it stores.

```python
SILKY_MAX_RECORDED_REQUESTS = 10**4
```

The garbage collection is only run on a percentage of requests to reduce overhead.  It can be adjusted with this config:

```python
SILKY_MAX_RECORDED_REQUESTS_CHECK_PERCENT = 10
```

In case you want decouple silk's garbage collection from your webserver's request processing, set SILKY_MAX_RECORDED_REQUESTS_CHECK_PERCENT=0 and trigger it manually, e.g. in a cron job:

```bash
python manage.py silk_request_garbage_collect
```

### Enable query analysis

To enable query analysis when supported by the dbms a config var can be set in order to execute queries with the analyze features.

```python
SILKY_ANALYZE_QUERIES = True
```

**Warning:** This setting may cause the database to execute the same query twice, depending on the backend. For instance, `EXPLAIN ANALYZE` in Postgres will [actually execute the query](https://www.postgresql.org/docs/current/sql-explain.html), which may result in unexpected data updates. Set this to True with caution.

To pass additional params for profiling when supported by the dbms (e.g. VERBOSE, FORMAT JSON), you can do this in the following manner.

```python
SILKY_EXPLAIN_FLAGS = {'format':'JSON', 'costs': True}
```


### Masking sensitive data on request body

By default, Silk is filtering values that contains the following keys (they are case insensitive)

```python
SILKY_SENSITIVE_KEYS = {'username', 'api', 'token', 'key', 'secret', 'password', 'signature'}
```

But sometimes, you might want to have your own sensitive keywords, then above configuration can be modified

```python
SILKY_SENSITIVE_KEYS = {'custom-password'}
```


### Clearing logged data

A management command will wipe out all logged data:

```bash
python manage.py silk_clear_request_log
```

## Contributing

[![Jazzband](https://jazzband.co/static/img/jazzband.svg)](https://jazzband.co/)

This is a [Jazzband](https://jazzband.co/) project. By contributing you agree to abide by the [Contributor Code of Conduct](https://jazzband.co/about/conduct) and follow the [guidelines](https://jazzband.co/about/guidelines).

### Development Environment

Silk features a project named `project` that can be used for `silk` development. It has the `silk` code symlinked so
you can work on the sample `project` and on the `silk` package at the same time.

In order to setup local development you should first install all the dependencies for the test `project`. From the
root of the `project` directory:

```bash
pip install -r requirements.txt
```

You will also need to install `silk`'s dependencies. From the root of the git repository:

```bash
pip install -e .
```

At this point your virtual environment should have everything it needs to run both the sample `project` and
`silk` successfully.

Before running, you must set the `DB_ENGINE` and `DB_NAME` environment variables:

```bash
export DB_ENGINE=sqlite3
export DB_NAME=db.sqlite3
```

For other combinations, check [`tox.ini`](./tox.ini).

Now from the root of the sample `project` apply the migrations

```bash
python manage.py migrate
```

Now from the root of the sample `project` directory start the django server

```bash
python manage.py runserver
```

#### Running the tests

```bash
cd project
python manage.py test
```

Happy profiling!


%package help
Summary:	Development documents and examples for django-silk
Provides:	python3-django-silk-doc
%description help
# Silk

[![GitHub Actions](https://github.com/jazzband/django-silk/workflows/Test/badge.svg)](https://github.com/jazzband/django-silk/actions)
[![GitHub Actions](https://codecov.io/gh/jazzband/django-silk/branch/master/graph/badge.svg)](https://codecov.io/gh/jazzband/django-silk)
[![PyPI Download](https://img.shields.io/pypi/v/django-silk.svg)](https://pypi.python.org/pypi/django-silk)
[![PyPI Python Versions](https://img.shields.io/pypi/pyversions/django-silk.svg)](https://pypi.python.org/pypi/django-silk)
[![Supported Django versions](https://img.shields.io/pypi/djversions/django-silk.svg)](https://pypi.python.org/pypi/django-silk)
[![Jazzband](https://jazzband.co/static/img/badge.svg)](https://jazzband.co/)

Silk is a live profiling and inspection tool for the Django framework. Silk intercepts and stores HTTP requests and database queries before presenting them in a user interface for further inspection:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/1.png" width="720px"/>

## Contents

* [Requirements](#requirements)
* [Installation](#installation)
* [Features](#features)
* [Configuration](#configuration)
  * [Authentication/Authorisation](#authenticationauthorisation)
  * [Request/Response bodies](#requestresponse-bodies)
  * [Meta-Profiling](#meta-profiling)
  * [Recording a fraction of requests](#recording-a-fraction-of-requests)
  * [Limiting request/response data](#limiting-requestresponse-data)
  * [Clearing logged data](#clearing-logged-data)
* [Contributing](#contributing)
  * [Development Environment](#development-environment)

## Requirements

Silk has been tested with:

* Django: 3.2, 4.0, 4.1
* Python: 3.7, 3.8, 3.9, 3.10, 3.11

## Installation

Via pip into a `virtualenv`:

```bash
pip install django-silk
```

In `settings.py` add the following:

```python
MIDDLEWARE = [
    ...
    'silk.middleware.SilkyMiddleware',
    ...
]

INSTALLED_APPS = (
    ...
    'silk'
)
```

**Note:** The middleware placement is sensitive. If the middleware before `silk.middleware.SilkyMiddleware` returns from `process_request` then `SilkyMiddleware` will never get the chance to execute. Therefore you must ensure that any middleware placed before never returns anything from `process_request`. See the [django docs](https://docs.djangoproject.com/en/dev/topics/http/middleware/#process-request) for more information on this.

**Note:** If you are using `django.middleware.gzip.GZipMiddleware`, place that **before** `silk.middleware.SilkyMiddleware`, otherwise you will get an encoding error.

If you want to use custom middleware, for example you developed the subclass of `silk.middleware.SilkyMiddleware`, so you can use this combination of settings:

```python
# Specify the path where is the custom middleware placed
SILKY_MIDDLEWARE_CLASS = 'path.to.your.middleware.MyCustomSilkyMiddleware'

# Use this variable in list of middleware
MIDDLEWARE = [
    ...
    SILKY_MIDDLEWARE_CLASS,
    ...
]
```

To enable access to the user interface add the following to your `urls.py`:

```python
urlpatterns += [path('silk/', include('silk.urls', namespace='silk'))]
```

before running migrate:

```bash
python manage.py migrate

python manage.py collectstatic
```


Silk will automatically begin interception of requests and you can proceed to add profiling
if required. The UI can be reached at `/silk/`

### Alternative Installation

Via [github tags](https://github.com/jazzband/django-silk/releases):

```bash
pip install https://github.com/jazzband/silk/archive/<version>.tar.gz
```

You can install from master using the following, but please be aware that the version in master
may not be working for all versions specified in [requirements](#requirements)

```bash
pip install -e git+https://github.com/jazzband/django-silk.git#egg=django-silk
```

## Features

Silk primarily consists of:

* Middleware for intercepting Requests/Responses
* A wrapper around SQL execution for profiling of database queries
* A context manager/decorator for profiling blocks of code and functions either manually or dynamically.
* A user interface for inspection and visualisation of the above.

### Request Inspection

The Silk middleware intercepts and stores requests and responses in the configured database.
These requests can then be filtered and inspecting using Silk's UI through the request overview:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/1.png" width="720px"/>

It records things like:

* Time taken
* Num. queries
* Time spent on queries
* Request/Response headers
* Request/Response bodies

and so on.

Further details on each request are also available by clicking the relevant request:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/2.png" width="720px"/>

### SQL Inspection

Silk also intercepts SQL queries that are generated by each request. We can get a summary on things like
the tables involved, number of joins and execution time (the table can be sorted by clicking on a column header):

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/3.png" width="720px"/>

Before diving into the stack trace to figure out where this request is coming from:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/5.png" width="720px"/>

### Profiling

Turn on the SILKY_PYTHON_PROFILER setting to use Python's built-in cProfile profiler. Each request will be separately profiled and the profiler's output will be available on the request's Profiling page in the Silk UI.

```python
SILKY_PYTHON_PROFILER = True
```

If you would like to also generate a binary `.prof` file set the following:

```python
SILKY_PYTHON_PROFILER_BINARY = True
```

When enabled, a graph visualisation generated using [gprof2dot](https://github.com/jrfonseca/gprof2dot) and [viz.js](https://github.com/almende/vis) is shown in the profile detail page:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/10.png" width="720px"/>


A custom storage class can be used for the saved generated binary `.prof` files:

```python
SILKY_STORAGE_CLASS = 'path.to.StorageClass'
```

The default storage class is `silk.storage.ProfilerResultStorage`, and when using that you can specify a path of your choosing. You must ensure the specified directory exists.

```python
# If this is not set, MEDIA_ROOT will be used.
SILKY_PYTHON_PROFILER_RESULT_PATH = '/path/to/profiles/'
```

A download button will become available with a binary `.prof` file for every request. This file can be used for further analysis using [snakeviz](https://github.com/jiffyclub/snakeviz) or other cProfile tools


Silk can also be used to profile specific blocks of code/functions. It provides a decorator and a context
manager for this purpose.

For example:

```python
from silk.profiling.profiler import silk_profile


@silk_profile(name='View Blog Post')
def post(request, post_id):
    p = Post.objects.get(pk=post_id)
    return render(request, 'post.html', {
        'post': p
    })
```

Whenever a blog post is viewed we get an entry within the Silk UI:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/7.png" width="720px"/>

Silk profiling not only provides execution time, but also collects SQL queries executed within the block in the same fashion as with requests:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/8.png" width="720px"/>

#### Decorator

The silk decorator can be applied to both functions and methods

```python
from silk.profiling.profiler import silk_profile


# Profile a view function
@silk_profile(name='View Blog Post')
def post(request, post_id):
    p = Post.objects.get(pk=post_id)
    return render(request, 'post.html', {
        'post': p
    })


# Profile a method in a view class
class MyView(View):
    @silk_profile(name='View Blog Post')
    def get(self, request):
        p = Post.objects.get(pk=post_id)
        return render(request, 'post.html', {
            'post': p
        })
```

#### Context Manager

Using a context manager means we can add additional context to the name which can be useful for
narrowing down slowness to particular database records.

```python
def post(request, post_id):
    with silk_profile(name='View Blog Post #%d' % self.pk):
        p = Post.objects.get(pk=post_id)
        return render(request, 'post.html', {
            'post': p
        })
```

#### Dynamic Profiling

One of Silk's more interesting features is dynamic profiling. If for example we wanted to profile a function in a dependency to which we only have read-only access (e.g. system python libraries owned by root) we can add the following to `settings.py` to apply a decorator at runtime:

```python
SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'MyClass.bar'
}]
```

which is roughly equivalent to:

```python
class MyClass:
    @silk_profile()
    def bar(self):
        pass
```

The below summarizes the possibilities:

```python

"""
Dynamic function decorator
"""

SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'foo'
}]

# ... is roughly equivalent to
@silk_profile()
def foo():
    pass

"""
Dynamic method decorator
"""

SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'MyClass.bar'
}]

# ... is roughly equivalent to
class MyClass:

    @silk_profile()
    def bar(self):
        pass

"""
Dynamic code block profiling
"""

SILKY_DYNAMIC_PROFILING = [{
    'module': 'path.to.module',
    'function': 'foo',
    # Line numbers are relative to the function as opposed to the file in which it resides
    'start_line': 1,
    'end_line': 2,
    'name': 'Slow Foo'
}]

# ... is roughly equivalent to
def foo():
    with silk_profile(name='Slow Foo'):
        print (1)
        print (2)
    print(3)
    print(4)
```

Note that dynamic profiling behaves in a similar fashion to that of the python mock framework in that
we modify the function in-place e.g:

```python
""" my.module """
from another.module import foo

# ...do some stuff
foo()
# ...do some other stuff
```

,we would profile `foo` by dynamically decorating `my.module.foo` as opposed to `another.module.foo`:

```python
SILKY_DYNAMIC_PROFILING = [{
    'module': 'my.module',
    'function': 'foo'
}]
```

If we were to apply the dynamic profile to the functions source module `another.module.foo` **after**
it has already been imported, no profiling would be triggered.


#### Custom Logic for Profiling

Sometimes you may want to dynamically control when the profiler runs. You can write your own logic for when to enable the profiler. To do this add the following to your `settings.py`:

This setting is mutually exclusive with SILKY_PYTHON_PROFILER and will be used over it if present. It will work with SILKY_DYNAMIC_PROFILING.

```python
def my_custom_logic(request):
    return 'profile_requests' in request.session

SILKY_PYTHON_PROFILER_FUNC = my_custom_logic # profile only session has recording enabled.
```

You can also use a `lambda`.

```python
# profile only session has recording enabled.
SILKY_PYTHON_PROFILER_FUNC = lambda request: 'profile_requests' in request.session
```

### Code Generation

Silk currently generates two bits of code per request:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/9.png" width="720px"/>

Both are intended for use in replaying the request. The curl command can be used to replay via command-line and the python code can be used within a Django unit test or simply as a standalone script.

## Configuration

### Authentication/Authorisation

By default anybody can access the Silk user interface by heading to `/silk/`. To enable your Django
auth backend place the following in `settings.py`:

```python
SILKY_AUTHENTICATION = True  # User must login
SILKY_AUTHORISATION = True  # User must have permissions
```

If `SILKY_AUTHORISATION` is `True`, by default Silk will only authorise users with `is_staff` attribute set to `True`.

You can customise this using the following in `settings.py`:

```python
def my_custom_perms(user):
    return user.is_allowed_to_use_silk

SILKY_PERMISSIONS = my_custom_perms
```

You can also use a `lambda`.

```python
SILKY_PERMISSIONS = lambda user: user.is_superuser
```

### Request/Response bodies

By default, Silk will save down the request and response bodies for each request for future viewing
no matter how large. If Silk is used in production under heavy volume with large bodies this can have
a huge impact on space/time performance. This behaviour can be configured with the following options:

```python
SILKY_MAX_REQUEST_BODY_SIZE = -1  # Silk takes anything <0 as no limit
SILKY_MAX_RESPONSE_BODY_SIZE = 1024  # If response body>1024 bytes, ignore
```

### Meta-Profiling

Sometimes it is useful to be able to see what effect Silk is having on the request/response time. To do this add
the following to your `settings.py`:

```python
SILKY_META = True
```

Silk will then record how long it takes to save everything down to the database at the end of each
request:

<img src="https://raw.githubusercontent.com/jazzband/django-silk/master/screenshots/meta.png"/>

Note that in the above screenshot, this means that the request took 29ms (22ms from Django and 7ms from Silk)

### Recording a Fraction of Requests

On high-load sites it may be helpful to only record a fraction of the requests that are made. To do this add the following to your `settings.py`:

Note: This setting is mutually exclusive with SILKY_INTERCEPT_FUNC.

```python
SILKY_INTERCEPT_PERCENT = 50 # log only 50% of requests
```

#### Custom Logic for Recording Requests

On high-load sites it may also be helpful to write your own logic for when to intercept requests. To do this add the following to your `settings.py`:

Note: This setting is mutually exclusive with SILKY_INTERCEPT_PERCENT.

```python
def my_custom_logic(request):
    return 'record_requests' in request.session

SILKY_INTERCEPT_FUNC = my_custom_logic # log only session has recording enabled.
```

You can also use a `lambda`.

```python
# log only session has recording enabled.
SILKY_INTERCEPT_FUNC = lambda request: 'record_requests' in request.session
```

### Limiting request/response data

To make sure silky garbage collects old request/response data, a config var can be set to limit the number of request/response rows it stores.

```python
SILKY_MAX_RECORDED_REQUESTS = 10**4
```

The garbage collection is only run on a percentage of requests to reduce overhead.  It can be adjusted with this config:

```python
SILKY_MAX_RECORDED_REQUESTS_CHECK_PERCENT = 10
```

In case you want decouple silk's garbage collection from your webserver's request processing, set SILKY_MAX_RECORDED_REQUESTS_CHECK_PERCENT=0 and trigger it manually, e.g. in a cron job:

```bash
python manage.py silk_request_garbage_collect
```

### Enable query analysis

To enable query analysis when supported by the dbms a config var can be set in order to execute queries with the analyze features.

```python
SILKY_ANALYZE_QUERIES = True
```

**Warning:** This setting may cause the database to execute the same query twice, depending on the backend. For instance, `EXPLAIN ANALYZE` in Postgres will [actually execute the query](https://www.postgresql.org/docs/current/sql-explain.html), which may result in unexpected data updates. Set this to True with caution.

To pass additional params for profiling when supported by the dbms (e.g. VERBOSE, FORMAT JSON), you can do this in the following manner.

```python
SILKY_EXPLAIN_FLAGS = {'format':'JSON', 'costs': True}
```


### Masking sensitive data on request body

By default, Silk is filtering values that contains the following keys (they are case insensitive)

```python
SILKY_SENSITIVE_KEYS = {'username', 'api', 'token', 'key', 'secret', 'password', 'signature'}
```

But sometimes, you might want to have your own sensitive keywords, then above configuration can be modified

```python
SILKY_SENSITIVE_KEYS = {'custom-password'}
```


### Clearing logged data

A management command will wipe out all logged data:

```bash
python manage.py silk_clear_request_log
```

## Contributing

[![Jazzband](https://jazzband.co/static/img/jazzband.svg)](https://jazzband.co/)

This is a [Jazzband](https://jazzband.co/) project. By contributing you agree to abide by the [Contributor Code of Conduct](https://jazzband.co/about/conduct) and follow the [guidelines](https://jazzband.co/about/guidelines).

### Development Environment

Silk features a project named `project` that can be used for `silk` development. It has the `silk` code symlinked so
you can work on the sample `project` and on the `silk` package at the same time.

In order to setup local development you should first install all the dependencies for the test `project`. From the
root of the `project` directory:

```bash
pip install -r requirements.txt
```

You will also need to install `silk`'s dependencies. From the root of the git repository:

```bash
pip install -e .
```

At this point your virtual environment should have everything it needs to run both the sample `project` and
`silk` successfully.

Before running, you must set the `DB_ENGINE` and `DB_NAME` environment variables:

```bash
export DB_ENGINE=sqlite3
export DB_NAME=db.sqlite3
```

For other combinations, check [`tox.ini`](./tox.ini).

Now from the root of the sample `project` apply the migrations

```bash
python manage.py migrate
```

Now from the root of the sample `project` directory start the django server

```bash
python manage.py runserver
```

#### Running the tests

```bash
cd project
python manage.py test
```

Happy profiling!


%prep
%autosetup -n django-silk-5.0.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-django-silk -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 5.0.3-1
- Package Spec generated