diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-04-12 03:39:07 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-04-12 03:39:07 +0000 |
| commit | 96f4c0d22d363c75c54a8e1d7e63194a78b9c7ad (patch) | |
| tree | 428835ce39edcc29e106d7276e12cc21a608d380 | |
| parent | 93fe2ca8a91815e4a65d7fbaaf75f7beddb31e35 (diff) | |
automatic import of python-dm-pybloom
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-dm-pybloom.spec | 175 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 177 insertions, 0 deletions
@@ -0,0 +1 @@ +/dm_pybloom-3.0.4.tar.gz diff --git a/python-dm-pybloom.spec b/python-dm-pybloom.spec new file mode 100644 index 0000000..724fb9b --- /dev/null +++ b/python-dm-pybloom.spec @@ -0,0 +1,175 @@ +%global _empty_manifest_terminate_build 0 +Name: python-dm-pybloom +Version: 3.0.4 +Release: 1 +Summary: Datamaran's fork of Pybloom adapted to Python3 +License: MIT +URL: https://github.com/datamaranai/python-bloomfilter/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6e/27/2e1d03cc38f0cb89149a47702e97895d19ac4d29919c25526e7f7b26db12/dm_pybloom-3.0.4.tar.gz +BuildArch: noarch + +Requires: python3-bitarray + +%description +``dm_pybloom`` is a module that includes a Bloom Filter data structure along with +an implmentation of Scalable Bloom Filters as discussed in: +P. Almeida, C.Baquero, N. Preguiça, D. Hutchison, Scalable Bloom Filters, +(GLOBECOM 2007), IEEE, 2007. +Bloom filters are great if you understand what amount of bits you need to set +aside early to store your entire set. Scalable Bloom Filters allow your bloom +filter bits to grow as a function of false positive probability and size. +A filter is "full" when at capacity: M * ((ln 2 ^ 2) / abs(ln p)), where M +is the number of bits and p is the false positive probability. When capacity +is reached a new filter is then created exponentially larger than the last +with a tighter probability of false positives and a larger number of hash +functions. + >>> from dm_pybloom import BloomFilter + >>> f = BloomFilter(capacity=1000, error_rate=0.001) + >>> [f.add(x) for x in range(10)] + [False, False, False, False, False, False, False, False, False, False] + >>> all([(x in f) for x in range(10)]) + True + >>> 10 in f + False + >>> 5 in f + True + >>> f = BloomFilter(capacity=1000, error_rate=0.001) + >>> for i in xrange(0, f.capacity): + >>> (1.0 - (len(f) / float(f.capacity))) <= f.error_rate + 2e-18 + True + >>> from dm_pybloom import ScalableBloomFilter + >>> sbf = ScalableBloomFilter(mode=ScalableBloomFilter.SMALL_SET_GROWTH) + >>> count = 10000 + >>> for i in xrange(0, count): + >>> (1.0 - (len(sbf) / float(count))) <= sbf.error_rate + 2e-18 + True + # len(sbf) may not equal the entire input length. 0.01% error is well + # below the default 0.1% error threshold. As the capacity goes up, the + # error will approach 0.1%. + +%package -n python3-dm-pybloom +Summary: Datamaran's fork of Pybloom adapted to Python3 +Provides: python-dm-pybloom +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-dm-pybloom +``dm_pybloom`` is a module that includes a Bloom Filter data structure along with +an implmentation of Scalable Bloom Filters as discussed in: +P. Almeida, C.Baquero, N. Preguiça, D. Hutchison, Scalable Bloom Filters, +(GLOBECOM 2007), IEEE, 2007. +Bloom filters are great if you understand what amount of bits you need to set +aside early to store your entire set. Scalable Bloom Filters allow your bloom +filter bits to grow as a function of false positive probability and size. +A filter is "full" when at capacity: M * ((ln 2 ^ 2) / abs(ln p)), where M +is the number of bits and p is the false positive probability. When capacity +is reached a new filter is then created exponentially larger than the last +with a tighter probability of false positives and a larger number of hash +functions. + >>> from dm_pybloom import BloomFilter + >>> f = BloomFilter(capacity=1000, error_rate=0.001) + >>> [f.add(x) for x in range(10)] + [False, False, False, False, False, False, False, False, False, False] + >>> all([(x in f) for x in range(10)]) + True + >>> 10 in f + False + >>> 5 in f + True + >>> f = BloomFilter(capacity=1000, error_rate=0.001) + >>> for i in xrange(0, f.capacity): + >>> (1.0 - (len(f) / float(f.capacity))) <= f.error_rate + 2e-18 + True + >>> from dm_pybloom import ScalableBloomFilter + >>> sbf = ScalableBloomFilter(mode=ScalableBloomFilter.SMALL_SET_GROWTH) + >>> count = 10000 + >>> for i in xrange(0, count): + >>> (1.0 - (len(sbf) / float(count))) <= sbf.error_rate + 2e-18 + True + # len(sbf) may not equal the entire input length. 0.01% error is well + # below the default 0.1% error threshold. As the capacity goes up, the + # error will approach 0.1%. + +%package help +Summary: Development documents and examples for dm-pybloom +Provides: python3-dm-pybloom-doc +%description help +``dm_pybloom`` is a module that includes a Bloom Filter data structure along with +an implmentation of Scalable Bloom Filters as discussed in: +P. Almeida, C.Baquero, N. Preguiça, D. Hutchison, Scalable Bloom Filters, +(GLOBECOM 2007), IEEE, 2007. +Bloom filters are great if you understand what amount of bits you need to set +aside early to store your entire set. Scalable Bloom Filters allow your bloom +filter bits to grow as a function of false positive probability and size. +A filter is "full" when at capacity: M * ((ln 2 ^ 2) / abs(ln p)), where M +is the number of bits and p is the false positive probability. When capacity +is reached a new filter is then created exponentially larger than the last +with a tighter probability of false positives and a larger number of hash +functions. + >>> from dm_pybloom import BloomFilter + >>> f = BloomFilter(capacity=1000, error_rate=0.001) + >>> [f.add(x) for x in range(10)] + [False, False, False, False, False, False, False, False, False, False] + >>> all([(x in f) for x in range(10)]) + True + >>> 10 in f + False + >>> 5 in f + True + >>> f = BloomFilter(capacity=1000, error_rate=0.001) + >>> for i in xrange(0, f.capacity): + >>> (1.0 - (len(f) / float(f.capacity))) <= f.error_rate + 2e-18 + True + >>> from dm_pybloom import ScalableBloomFilter + >>> sbf = ScalableBloomFilter(mode=ScalableBloomFilter.SMALL_SET_GROWTH) + >>> count = 10000 + >>> for i in xrange(0, count): + >>> (1.0 - (len(sbf) / float(count))) <= sbf.error_rate + 2e-18 + True + # len(sbf) may not equal the entire input length. 0.01% error is well + # below the default 0.1% error threshold. As the capacity goes up, the + # error will approach 0.1%. + +%prep +%autosetup -n dm-pybloom-3.0.4 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-dm-pybloom -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 3.0.4-1 +- Package Spec generated @@ -0,0 +1 @@ +7ca03bc999a97ce168b2be08d4781c19 dm_pybloom-3.0.4.tar.gz |
