summaryrefslogtreecommitdiff
path: root/python-dm-sonnet.spec
blob: 3049d846259394ecd5a0554821168248ee56c521 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
%global _empty_manifest_terminate_build 0
Name:		python-dm-sonnet
Version:	2.0.1
Release:	1
Summary:	Sonnet is a library for building neural networks in TensorFlow.
License:	Apache 2.0
URL:		https://github.com/deepmind/sonnet
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/49/cb/24c9b00eb7823e26ccdc37c9c5179485b97212546bb931310616d8dc9647/dm-sonnet-2.0.1.tar.gz
BuildArch:	noarch

Requires:	python3-absl-py
Requires:	python3-dm-tree
Requires:	python3-numpy
Requires:	python3-tabulate
Requires:	python3-wrapt
Requires:	python3-tensorflow
Requires:	python3-tensorflow-gpu

%description
![Sonnet](https://sonnet.dev/images/sonnet_logo.png)

# Sonnet

[**Documentation**](https://sonnet.readthedocs.io/) | [**Examples**](#examples)

Sonnet is a library built on top of [TensorFlow 2](https://www.tensorflow.org/)
designed to provide simple, composable abstractions for machine learning
research.

# Introduction

Sonnet has been designed and built by researchers at DeepMind. It can be used to
construct neural networks for many different purposes (un/supervised learning,
reinforcement learning, ...). We find it is a successful abstraction for our
organization, you might too!

More specifically, Sonnet provides a simple but powerful programming model
centered around a single concept: `snt.Module`. Modules can hold references to
parameters, other modules and methods that apply some function on the user
input. Sonnet ships with many predefined modules (e.g. `snt.Linear`,
`snt.Conv2D`, `snt.BatchNorm`) and some predefined networks of modules (e.g.
`snt.nets.MLP`) but users are also encouraged to build their own modules.

Unlike many frameworks Sonnet is extremely unopinionated about **how** you will
use your modules. Modules are designed to be self contained and entirely
decoupled from one another. Sonnet does not ship with a training framework and
users are encouraged to build their own or adopt those built by others.

Sonnet is also designed to be simple to understand, our code is (hopefully!)
clear and focussed. Where we have picked defaults (e.g. defaults for initial
parameter values) we try to point out why.

# Getting Started

## Examples

The easiest way to try Sonnet is to use Google Colab which offers a free Python
notebook attached to a GPU or TPU.

- [Predicting MNIST with an MLP](https://colab.research.google.com/github/deepmind/sonnet/blob/v2/examples/mlp_on_mnist.ipynb)
- [Training a Little GAN on MNIST](https://colab.research.google.com/github/deepmind/sonnet/blob/v2/examples/little_gan_on_mnist.ipynb)
- [Distributed training with `snt.distribute`](https://colab.research.google.com/github/deepmind/sonnet/blob/v2/examples/distributed_cifar10.ipynb)

## Installation

To get started install TensorFlow 2.0 and Sonnet 2:

```shell
$ pip install tensorflow tensorflow-probability
$ pip install dm-sonnet
```

You can run the following to verify things installed correctly:

```python
import tensorflow as tf
import sonnet as snt

print("TensorFlow version {}".format(tf.__version__))
print("Sonnet version {}".format(snt.__version__))
```

### Using existing modules

Sonnet ships with a number of built in modules that you can trivially use. For
example to define an MLP we can use the `snt.Sequential` module to call a
sequence of modules, passing the output of a given module as the input for the
next module. We can use `snt.Linear` and `tf.nn.relu` to actually define our
computation:

```python
mlp = snt.Sequential([
    snt.Linear(1024),
    tf.nn.relu,
    snt.Linear(10),
])
```

To use our module we need to "call" it. The `Sequential` module (and most
modules) define a `__call__` method that means you can call them by name:

```python
logits = mlp(tf.random.normal([batch_size, input_size]))
```

It is also very common to request all the parameters for your module. Most
modules in Sonnet create their parameters the first time they are called with
some input (since in most cases the shape of the parameters is a function of
the input). Sonnet modules provide two properties for accessing parameters.

The `variables` property returns **all** `tf.Variable`s that are referenced by
the given module:

```python
all_variables = mlp.variables
```

It is worth noting that `tf.Variable`s are not just used for parameters of your
model. For example they are used to hold state in metrics used in
`snt.BatchNorm`. In most cases users retrieve the module variables to pass them
to an optimizer to be updated. In this case non-trainable variables should
typically not be in that list as they are updated via a different mechanism.
TensorFlow has a built in mechanism to mark variables as "trainable" (parameters
of your model) vs. non-trainable (other variables). Sonnet provides a mechanism
to gather all trainable variables from your module which is probably what you
want to pass to an optimizer:

```python
model_parameters = mlp.trainable_variables
```

### Building your own module

Sonnet strongly encourages users to subclass `snt.Module` to define their own
modules. Let's start by creating a simple `Linear` layer called `MyLinear`:

```python
class MyLinear(snt.Module):

  def __init__(self, output_size, name=None):
    super(MyLinear, self).__init__(name=name)
    self.output_size = output_size

  @snt.once
  def _initialize(self, x):
    initial_w = tf.random.normal([x.shape[1], self.output_size])
    self.w = tf.Variable(initial_w, name="w")
    self.b = tf.Variable(tf.zeros([self.output_size]), name="b")

  def __call__(self, x):
    self._initialize(x)
    return tf.matmul(x, self.w) + self.b
```

Using this module is trivial:

```python
mod = MyLinear(32)
mod(tf.ones([batch_size, input_size]))
```

By subclassing `snt.Module` you get many nice properties for free. For example
a default implementation of `__repr__` which shows constructor arguments (very
useful for debugging and introspection):

```python
>>> print(repr(mod))
MyLinear(output_size=10)
```

You also get the `variables` and `trainable_variables` properties:

```python
>>> mod.variables
(<tf.Variable 'my_linear/b:0' shape=(10,) ...)>,
 <tf.Variable 'my_linear/w:0' shape=(1, 10) ...)>)
```

You may notice the `my_linear` prefix on the variables above. This is because
Sonnet modules also enter the modules name scope whenever methods are called.
By entering the module name scope we provide a much more useful graph for tools
like TensorBoard to consume (e.g. all operations that occur inside my_linear
will be in a group called my_linear).

Additionally your module will now support TensorFlow checkpointing and saved
model which are advanced features covered later.

# Serialization

Sonnet supports multiple serialization formats. The simplest format we support
is Python's `pickle`, and all built in modules are tested to make sure they can
be saved/loaded via pickle in the same Python process. In general we discourage
the use of pickle, it is not well supported by many parts of TensorFlow and in
our experience can be quite brittle.

## TensorFlow Checkpointing

**Reference:** https://www.tensorflow.org/alpha/guide/checkpoints

TensorFlow checkpointing can be used to save the value of parameters
periodically during training. This can be useful to save the progress of
training in case your program crashes or is stopped. Sonnet is designed to work
cleanly with TensorFlow checkpointing:

```python
checkpoint_root = "/tmp/checkpoints"
checkpoint_name = "example"
save_prefix = os.path.join(checkpoint_root, checkpoint_name)

my_module = create_my_sonnet_module()  # Can be anything extending snt.Module.

# A `Checkpoint` object manages checkpointing of the TensorFlow state associated
# with the objects passed to it's constructor. Note that Checkpoint supports
# restore on create, meaning that the variables of `my_module` do **not** need
# to be created before you restore from a checkpoint (their value will be
# restored when they are created).
checkpoint = tf.train.Checkpoint(module=my_module)

# Most training scripts will want to restore from a checkpoint if one exists. This
# would be the case if you interrupted your training (e.g. to use your GPU for
# something else, or in a cloud environment if your instance is preempted).
latest = tf.train.latest_checkpoint(checkpoint_root)
if latest is not None:
  checkpoint.restore(latest)

for step_num in range(num_steps):
  train(my_module)

  # During training we will occasionally save the values of weights. Note that
  # this is a blocking call and can be slow (typically we are writing to the
  # slowest storage on the machine). If you have a more reliable setup it might be
  # appropriate to save less frequently.
  if step_num and not step_num % 1000:
    checkpoint.save(save_prefix)

# Make sure to save your final values!!
checkpoint.save(save_prefix)
```

## TensorFlow Saved Model

**Reference:** https://www.tensorflow.org/alpha/guide/saved_model

TensorFlow saved models can be used to save a copy of your network that is
decoupled from the Python source for it. This is enabled by saving a TensorFlow
graph describing the computation and a checkpoint containing the value of
weights.

The first thing to do in order to create a saved model is to create a
`snt.Module` that you want to save:

```python
my_module = snt.nets.MLP([1024, 1024, 10])
my_module(tf.ones([1, input_size]))
```

Next, we need to create another module describing the specific parts of our
model that we want to export. We advise doing this (rather than modifying the
original model in-place) so you have fine grained control over what is actually
exported. This is typically important to avoid creating very large saved models,
and such that you only share the parts of your model you want to (e.g. you only
want to share the generator for a GAN but keep the discriminator private).

```python
@tf.function(input_signature=[tf.TensorSpec([None, input_size])])
def inference(x):
  return my_module(x)

to_save = snt.Module()
to_save.inference = inference
to_save.all_variables = list(my_module.variables)
tf.saved_model.save(to_save, "/tmp/example_saved_model")
```

We now have a saved model in the `/tmp/example_saved_model` folder:

```shell
$ ls -lh /tmp/example_saved_model
total 24K
drwxrwsr-t 2 tomhennigan 154432098 4.0K Apr 28 00:14 assets
-rw-rw-r-- 1 tomhennigan 154432098  14K Apr 28 00:15 saved_model.pb
drwxrwsr-t 2 tomhennigan 154432098 4.0K Apr 28 00:15 variables
```

Loading this model is simple and can be done on a different machine without any
of the Python code that built the saved model:

```python
loaded = tf.saved_model.load("/tmp/example_saved_model")

# Use the inference method. Note this doesn't run the Python code from `to_save`
# but instead uses the TensorFlow Graph that is part of the saved model.
loaded.inference(tf.ones([1, input_size]))

# The all_variables property can be used to retrieve the restored variables.
assert len(loaded.all_variables) > 0
```

Note that the loaded object is not a Sonnet module, it is a container object
that has the specific methods (e.g. `inference`) and properties (e.g.
`all_variables`) that we added in the previous block.

## Distributed training

**Example:** https://github.com/deepmind/sonnet/blob/v2/examples/distributed_cifar10.ipynb

Sonnet has support for distributed training using
[custom TensorFlow distribution strategies](https://sonnet.readthedocs.io/en/latest/api.html#module-sonnet.distribute).

A key difference between Sonnet and distributed training using `tf.keras` is
that Sonnet modules and optimizers do not behave differently when run under
distribution strategies (e.g. we do not average your gradients or sync your
batch norm stats). We believe that users should be in full control of these
aspects of their training and they should not be baked into the library. The
trade off here is that you need to implement these features in your training
script (typically this is just 2 lines of code to all reduce your gradients
before applying your optimizer) or swap in modules that are explicitly
distribution aware (e.g. `snt.distribute.CrossReplicaBatchNorm`).

Our [distributed Cifar-10](https://github.com/deepmind/sonnet/blob/v2/examples/distributed_cifar10.ipynb)
example walks through doing multi-GPU training with Sonnet.




%package -n python3-dm-sonnet
Summary:	Sonnet is a library for building neural networks in TensorFlow.
Provides:	python-dm-sonnet
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-dm-sonnet
![Sonnet](https://sonnet.dev/images/sonnet_logo.png)

# Sonnet

[**Documentation**](https://sonnet.readthedocs.io/) | [**Examples**](#examples)

Sonnet is a library built on top of [TensorFlow 2](https://www.tensorflow.org/)
designed to provide simple, composable abstractions for machine learning
research.

# Introduction

Sonnet has been designed and built by researchers at DeepMind. It can be used to
construct neural networks for many different purposes (un/supervised learning,
reinforcement learning, ...). We find it is a successful abstraction for our
organization, you might too!

More specifically, Sonnet provides a simple but powerful programming model
centered around a single concept: `snt.Module`. Modules can hold references to
parameters, other modules and methods that apply some function on the user
input. Sonnet ships with many predefined modules (e.g. `snt.Linear`,
`snt.Conv2D`, `snt.BatchNorm`) and some predefined networks of modules (e.g.
`snt.nets.MLP`) but users are also encouraged to build their own modules.

Unlike many frameworks Sonnet is extremely unopinionated about **how** you will
use your modules. Modules are designed to be self contained and entirely
decoupled from one another. Sonnet does not ship with a training framework and
users are encouraged to build their own or adopt those built by others.

Sonnet is also designed to be simple to understand, our code is (hopefully!)
clear and focussed. Where we have picked defaults (e.g. defaults for initial
parameter values) we try to point out why.

# Getting Started

## Examples

The easiest way to try Sonnet is to use Google Colab which offers a free Python
notebook attached to a GPU or TPU.

- [Predicting MNIST with an MLP](https://colab.research.google.com/github/deepmind/sonnet/blob/v2/examples/mlp_on_mnist.ipynb)
- [Training a Little GAN on MNIST](https://colab.research.google.com/github/deepmind/sonnet/blob/v2/examples/little_gan_on_mnist.ipynb)
- [Distributed training with `snt.distribute`](https://colab.research.google.com/github/deepmind/sonnet/blob/v2/examples/distributed_cifar10.ipynb)

## Installation

To get started install TensorFlow 2.0 and Sonnet 2:

```shell
$ pip install tensorflow tensorflow-probability
$ pip install dm-sonnet
```

You can run the following to verify things installed correctly:

```python
import tensorflow as tf
import sonnet as snt

print("TensorFlow version {}".format(tf.__version__))
print("Sonnet version {}".format(snt.__version__))
```

### Using existing modules

Sonnet ships with a number of built in modules that you can trivially use. For
example to define an MLP we can use the `snt.Sequential` module to call a
sequence of modules, passing the output of a given module as the input for the
next module. We can use `snt.Linear` and `tf.nn.relu` to actually define our
computation:

```python
mlp = snt.Sequential([
    snt.Linear(1024),
    tf.nn.relu,
    snt.Linear(10),
])
```

To use our module we need to "call" it. The `Sequential` module (and most
modules) define a `__call__` method that means you can call them by name:

```python
logits = mlp(tf.random.normal([batch_size, input_size]))
```

It is also very common to request all the parameters for your module. Most
modules in Sonnet create their parameters the first time they are called with
some input (since in most cases the shape of the parameters is a function of
the input). Sonnet modules provide two properties for accessing parameters.

The `variables` property returns **all** `tf.Variable`s that are referenced by
the given module:

```python
all_variables = mlp.variables
```

It is worth noting that `tf.Variable`s are not just used for parameters of your
model. For example they are used to hold state in metrics used in
`snt.BatchNorm`. In most cases users retrieve the module variables to pass them
to an optimizer to be updated. In this case non-trainable variables should
typically not be in that list as they are updated via a different mechanism.
TensorFlow has a built in mechanism to mark variables as "trainable" (parameters
of your model) vs. non-trainable (other variables). Sonnet provides a mechanism
to gather all trainable variables from your module which is probably what you
want to pass to an optimizer:

```python
model_parameters = mlp.trainable_variables
```

### Building your own module

Sonnet strongly encourages users to subclass `snt.Module` to define their own
modules. Let's start by creating a simple `Linear` layer called `MyLinear`:

```python
class MyLinear(snt.Module):

  def __init__(self, output_size, name=None):
    super(MyLinear, self).__init__(name=name)
    self.output_size = output_size

  @snt.once
  def _initialize(self, x):
    initial_w = tf.random.normal([x.shape[1], self.output_size])
    self.w = tf.Variable(initial_w, name="w")
    self.b = tf.Variable(tf.zeros([self.output_size]), name="b")

  def __call__(self, x):
    self._initialize(x)
    return tf.matmul(x, self.w) + self.b
```

Using this module is trivial:

```python
mod = MyLinear(32)
mod(tf.ones([batch_size, input_size]))
```

By subclassing `snt.Module` you get many nice properties for free. For example
a default implementation of `__repr__` which shows constructor arguments (very
useful for debugging and introspection):

```python
>>> print(repr(mod))
MyLinear(output_size=10)
```

You also get the `variables` and `trainable_variables` properties:

```python
>>> mod.variables
(<tf.Variable 'my_linear/b:0' shape=(10,) ...)>,
 <tf.Variable 'my_linear/w:0' shape=(1, 10) ...)>)
```

You may notice the `my_linear` prefix on the variables above. This is because
Sonnet modules also enter the modules name scope whenever methods are called.
By entering the module name scope we provide a much more useful graph for tools
like TensorBoard to consume (e.g. all operations that occur inside my_linear
will be in a group called my_linear).

Additionally your module will now support TensorFlow checkpointing and saved
model which are advanced features covered later.

# Serialization

Sonnet supports multiple serialization formats. The simplest format we support
is Python's `pickle`, and all built in modules are tested to make sure they can
be saved/loaded via pickle in the same Python process. In general we discourage
the use of pickle, it is not well supported by many parts of TensorFlow and in
our experience can be quite brittle.

## TensorFlow Checkpointing

**Reference:** https://www.tensorflow.org/alpha/guide/checkpoints

TensorFlow checkpointing can be used to save the value of parameters
periodically during training. This can be useful to save the progress of
training in case your program crashes or is stopped. Sonnet is designed to work
cleanly with TensorFlow checkpointing:

```python
checkpoint_root = "/tmp/checkpoints"
checkpoint_name = "example"
save_prefix = os.path.join(checkpoint_root, checkpoint_name)

my_module = create_my_sonnet_module()  # Can be anything extending snt.Module.

# A `Checkpoint` object manages checkpointing of the TensorFlow state associated
# with the objects passed to it's constructor. Note that Checkpoint supports
# restore on create, meaning that the variables of `my_module` do **not** need
# to be created before you restore from a checkpoint (their value will be
# restored when they are created).
checkpoint = tf.train.Checkpoint(module=my_module)

# Most training scripts will want to restore from a checkpoint if one exists. This
# would be the case if you interrupted your training (e.g. to use your GPU for
# something else, or in a cloud environment if your instance is preempted).
latest = tf.train.latest_checkpoint(checkpoint_root)
if latest is not None:
  checkpoint.restore(latest)

for step_num in range(num_steps):
  train(my_module)

  # During training we will occasionally save the values of weights. Note that
  # this is a blocking call and can be slow (typically we are writing to the
  # slowest storage on the machine). If you have a more reliable setup it might be
  # appropriate to save less frequently.
  if step_num and not step_num % 1000:
    checkpoint.save(save_prefix)

# Make sure to save your final values!!
checkpoint.save(save_prefix)
```

## TensorFlow Saved Model

**Reference:** https://www.tensorflow.org/alpha/guide/saved_model

TensorFlow saved models can be used to save a copy of your network that is
decoupled from the Python source for it. This is enabled by saving a TensorFlow
graph describing the computation and a checkpoint containing the value of
weights.

The first thing to do in order to create a saved model is to create a
`snt.Module` that you want to save:

```python
my_module = snt.nets.MLP([1024, 1024, 10])
my_module(tf.ones([1, input_size]))
```

Next, we need to create another module describing the specific parts of our
model that we want to export. We advise doing this (rather than modifying the
original model in-place) so you have fine grained control over what is actually
exported. This is typically important to avoid creating very large saved models,
and such that you only share the parts of your model you want to (e.g. you only
want to share the generator for a GAN but keep the discriminator private).

```python
@tf.function(input_signature=[tf.TensorSpec([None, input_size])])
def inference(x):
  return my_module(x)

to_save = snt.Module()
to_save.inference = inference
to_save.all_variables = list(my_module.variables)
tf.saved_model.save(to_save, "/tmp/example_saved_model")
```

We now have a saved model in the `/tmp/example_saved_model` folder:

```shell
$ ls -lh /tmp/example_saved_model
total 24K
drwxrwsr-t 2 tomhennigan 154432098 4.0K Apr 28 00:14 assets
-rw-rw-r-- 1 tomhennigan 154432098  14K Apr 28 00:15 saved_model.pb
drwxrwsr-t 2 tomhennigan 154432098 4.0K Apr 28 00:15 variables
```

Loading this model is simple and can be done on a different machine without any
of the Python code that built the saved model:

```python
loaded = tf.saved_model.load("/tmp/example_saved_model")

# Use the inference method. Note this doesn't run the Python code from `to_save`
# but instead uses the TensorFlow Graph that is part of the saved model.
loaded.inference(tf.ones([1, input_size]))

# The all_variables property can be used to retrieve the restored variables.
assert len(loaded.all_variables) > 0
```

Note that the loaded object is not a Sonnet module, it is a container object
that has the specific methods (e.g. `inference`) and properties (e.g.
`all_variables`) that we added in the previous block.

## Distributed training

**Example:** https://github.com/deepmind/sonnet/blob/v2/examples/distributed_cifar10.ipynb

Sonnet has support for distributed training using
[custom TensorFlow distribution strategies](https://sonnet.readthedocs.io/en/latest/api.html#module-sonnet.distribute).

A key difference between Sonnet and distributed training using `tf.keras` is
that Sonnet modules and optimizers do not behave differently when run under
distribution strategies (e.g. we do not average your gradients or sync your
batch norm stats). We believe that users should be in full control of these
aspects of their training and they should not be baked into the library. The
trade off here is that you need to implement these features in your training
script (typically this is just 2 lines of code to all reduce your gradients
before applying your optimizer) or swap in modules that are explicitly
distribution aware (e.g. `snt.distribute.CrossReplicaBatchNorm`).

Our [distributed Cifar-10](https://github.com/deepmind/sonnet/blob/v2/examples/distributed_cifar10.ipynb)
example walks through doing multi-GPU training with Sonnet.




%package help
Summary:	Development documents and examples for dm-sonnet
Provides:	python3-dm-sonnet-doc
%description help
![Sonnet](https://sonnet.dev/images/sonnet_logo.png)

# Sonnet

[**Documentation**](https://sonnet.readthedocs.io/) | [**Examples**](#examples)

Sonnet is a library built on top of [TensorFlow 2](https://www.tensorflow.org/)
designed to provide simple, composable abstractions for machine learning
research.

# Introduction

Sonnet has been designed and built by researchers at DeepMind. It can be used to
construct neural networks for many different purposes (un/supervised learning,
reinforcement learning, ...). We find it is a successful abstraction for our
organization, you might too!

More specifically, Sonnet provides a simple but powerful programming model
centered around a single concept: `snt.Module`. Modules can hold references to
parameters, other modules and methods that apply some function on the user
input. Sonnet ships with many predefined modules (e.g. `snt.Linear`,
`snt.Conv2D`, `snt.BatchNorm`) and some predefined networks of modules (e.g.
`snt.nets.MLP`) but users are also encouraged to build their own modules.

Unlike many frameworks Sonnet is extremely unopinionated about **how** you will
use your modules. Modules are designed to be self contained and entirely
decoupled from one another. Sonnet does not ship with a training framework and
users are encouraged to build their own or adopt those built by others.

Sonnet is also designed to be simple to understand, our code is (hopefully!)
clear and focussed. Where we have picked defaults (e.g. defaults for initial
parameter values) we try to point out why.

# Getting Started

## Examples

The easiest way to try Sonnet is to use Google Colab which offers a free Python
notebook attached to a GPU or TPU.

- [Predicting MNIST with an MLP](https://colab.research.google.com/github/deepmind/sonnet/blob/v2/examples/mlp_on_mnist.ipynb)
- [Training a Little GAN on MNIST](https://colab.research.google.com/github/deepmind/sonnet/blob/v2/examples/little_gan_on_mnist.ipynb)
- [Distributed training with `snt.distribute`](https://colab.research.google.com/github/deepmind/sonnet/blob/v2/examples/distributed_cifar10.ipynb)

## Installation

To get started install TensorFlow 2.0 and Sonnet 2:

```shell
$ pip install tensorflow tensorflow-probability
$ pip install dm-sonnet
```

You can run the following to verify things installed correctly:

```python
import tensorflow as tf
import sonnet as snt

print("TensorFlow version {}".format(tf.__version__))
print("Sonnet version {}".format(snt.__version__))
```

### Using existing modules

Sonnet ships with a number of built in modules that you can trivially use. For
example to define an MLP we can use the `snt.Sequential` module to call a
sequence of modules, passing the output of a given module as the input for the
next module. We can use `snt.Linear` and `tf.nn.relu` to actually define our
computation:

```python
mlp = snt.Sequential([
    snt.Linear(1024),
    tf.nn.relu,
    snt.Linear(10),
])
```

To use our module we need to "call" it. The `Sequential` module (and most
modules) define a `__call__` method that means you can call them by name:

```python
logits = mlp(tf.random.normal([batch_size, input_size]))
```

It is also very common to request all the parameters for your module. Most
modules in Sonnet create their parameters the first time they are called with
some input (since in most cases the shape of the parameters is a function of
the input). Sonnet modules provide two properties for accessing parameters.

The `variables` property returns **all** `tf.Variable`s that are referenced by
the given module:

```python
all_variables = mlp.variables
```

It is worth noting that `tf.Variable`s are not just used for parameters of your
model. For example they are used to hold state in metrics used in
`snt.BatchNorm`. In most cases users retrieve the module variables to pass them
to an optimizer to be updated. In this case non-trainable variables should
typically not be in that list as they are updated via a different mechanism.
TensorFlow has a built in mechanism to mark variables as "trainable" (parameters
of your model) vs. non-trainable (other variables). Sonnet provides a mechanism
to gather all trainable variables from your module which is probably what you
want to pass to an optimizer:

```python
model_parameters = mlp.trainable_variables
```

### Building your own module

Sonnet strongly encourages users to subclass `snt.Module` to define their own
modules. Let's start by creating a simple `Linear` layer called `MyLinear`:

```python
class MyLinear(snt.Module):

  def __init__(self, output_size, name=None):
    super(MyLinear, self).__init__(name=name)
    self.output_size = output_size

  @snt.once
  def _initialize(self, x):
    initial_w = tf.random.normal([x.shape[1], self.output_size])
    self.w = tf.Variable(initial_w, name="w")
    self.b = tf.Variable(tf.zeros([self.output_size]), name="b")

  def __call__(self, x):
    self._initialize(x)
    return tf.matmul(x, self.w) + self.b
```

Using this module is trivial:

```python
mod = MyLinear(32)
mod(tf.ones([batch_size, input_size]))
```

By subclassing `snt.Module` you get many nice properties for free. For example
a default implementation of `__repr__` which shows constructor arguments (very
useful for debugging and introspection):

```python
>>> print(repr(mod))
MyLinear(output_size=10)
```

You also get the `variables` and `trainable_variables` properties:

```python
>>> mod.variables
(<tf.Variable 'my_linear/b:0' shape=(10,) ...)>,
 <tf.Variable 'my_linear/w:0' shape=(1, 10) ...)>)
```

You may notice the `my_linear` prefix on the variables above. This is because
Sonnet modules also enter the modules name scope whenever methods are called.
By entering the module name scope we provide a much more useful graph for tools
like TensorBoard to consume (e.g. all operations that occur inside my_linear
will be in a group called my_linear).

Additionally your module will now support TensorFlow checkpointing and saved
model which are advanced features covered later.

# Serialization

Sonnet supports multiple serialization formats. The simplest format we support
is Python's `pickle`, and all built in modules are tested to make sure they can
be saved/loaded via pickle in the same Python process. In general we discourage
the use of pickle, it is not well supported by many parts of TensorFlow and in
our experience can be quite brittle.

## TensorFlow Checkpointing

**Reference:** https://www.tensorflow.org/alpha/guide/checkpoints

TensorFlow checkpointing can be used to save the value of parameters
periodically during training. This can be useful to save the progress of
training in case your program crashes or is stopped. Sonnet is designed to work
cleanly with TensorFlow checkpointing:

```python
checkpoint_root = "/tmp/checkpoints"
checkpoint_name = "example"
save_prefix = os.path.join(checkpoint_root, checkpoint_name)

my_module = create_my_sonnet_module()  # Can be anything extending snt.Module.

# A `Checkpoint` object manages checkpointing of the TensorFlow state associated
# with the objects passed to it's constructor. Note that Checkpoint supports
# restore on create, meaning that the variables of `my_module` do **not** need
# to be created before you restore from a checkpoint (their value will be
# restored when they are created).
checkpoint = tf.train.Checkpoint(module=my_module)

# Most training scripts will want to restore from a checkpoint if one exists. This
# would be the case if you interrupted your training (e.g. to use your GPU for
# something else, or in a cloud environment if your instance is preempted).
latest = tf.train.latest_checkpoint(checkpoint_root)
if latest is not None:
  checkpoint.restore(latest)

for step_num in range(num_steps):
  train(my_module)

  # During training we will occasionally save the values of weights. Note that
  # this is a blocking call and can be slow (typically we are writing to the
  # slowest storage on the machine). If you have a more reliable setup it might be
  # appropriate to save less frequently.
  if step_num and not step_num % 1000:
    checkpoint.save(save_prefix)

# Make sure to save your final values!!
checkpoint.save(save_prefix)
```

## TensorFlow Saved Model

**Reference:** https://www.tensorflow.org/alpha/guide/saved_model

TensorFlow saved models can be used to save a copy of your network that is
decoupled from the Python source for it. This is enabled by saving a TensorFlow
graph describing the computation and a checkpoint containing the value of
weights.

The first thing to do in order to create a saved model is to create a
`snt.Module` that you want to save:

```python
my_module = snt.nets.MLP([1024, 1024, 10])
my_module(tf.ones([1, input_size]))
```

Next, we need to create another module describing the specific parts of our
model that we want to export. We advise doing this (rather than modifying the
original model in-place) so you have fine grained control over what is actually
exported. This is typically important to avoid creating very large saved models,
and such that you only share the parts of your model you want to (e.g. you only
want to share the generator for a GAN but keep the discriminator private).

```python
@tf.function(input_signature=[tf.TensorSpec([None, input_size])])
def inference(x):
  return my_module(x)

to_save = snt.Module()
to_save.inference = inference
to_save.all_variables = list(my_module.variables)
tf.saved_model.save(to_save, "/tmp/example_saved_model")
```

We now have a saved model in the `/tmp/example_saved_model` folder:

```shell
$ ls -lh /tmp/example_saved_model
total 24K
drwxrwsr-t 2 tomhennigan 154432098 4.0K Apr 28 00:14 assets
-rw-rw-r-- 1 tomhennigan 154432098  14K Apr 28 00:15 saved_model.pb
drwxrwsr-t 2 tomhennigan 154432098 4.0K Apr 28 00:15 variables
```

Loading this model is simple and can be done on a different machine without any
of the Python code that built the saved model:

```python
loaded = tf.saved_model.load("/tmp/example_saved_model")

# Use the inference method. Note this doesn't run the Python code from `to_save`
# but instead uses the TensorFlow Graph that is part of the saved model.
loaded.inference(tf.ones([1, input_size]))

# The all_variables property can be used to retrieve the restored variables.
assert len(loaded.all_variables) > 0
```

Note that the loaded object is not a Sonnet module, it is a container object
that has the specific methods (e.g. `inference`) and properties (e.g.
`all_variables`) that we added in the previous block.

## Distributed training

**Example:** https://github.com/deepmind/sonnet/blob/v2/examples/distributed_cifar10.ipynb

Sonnet has support for distributed training using
[custom TensorFlow distribution strategies](https://sonnet.readthedocs.io/en/latest/api.html#module-sonnet.distribute).

A key difference between Sonnet and distributed training using `tf.keras` is
that Sonnet modules and optimizers do not behave differently when run under
distribution strategies (e.g. we do not average your gradients or sync your
batch norm stats). We believe that users should be in full control of these
aspects of their training and they should not be baked into the library. The
trade off here is that you need to implement these features in your training
script (typically this is just 2 lines of code to all reduce your gradients
before applying your optimizer) or swap in modules that are explicitly
distribution aware (e.g. `snt.distribute.CrossReplicaBatchNorm`).

Our [distributed Cifar-10](https://github.com/deepmind/sonnet/blob/v2/examples/distributed_cifar10.ipynb)
example walks through doing multi-GPU training with Sonnet.




%prep
%autosetup -n dm-sonnet-2.0.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-dm-sonnet -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.1-1
- Package Spec generated