From 35c013eeea0e102d63be4b04464c46940ab6f1e8 Mon Sep 17 00:00:00 2001 From: CoprDistGit Date: Mon, 29 May 2023 10:54:31 +0000 Subject: automatic import of python-dnnlab --- python-dnnlab.spec | 211 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 211 insertions(+) create mode 100644 python-dnnlab.spec (limited to 'python-dnnlab.spec') diff --git a/python-dnnlab.spec b/python-dnnlab.spec new file mode 100644 index 0000000..17852e2 --- /dev/null +++ b/python-dnnlab.spec @@ -0,0 +1,211 @@ +%global _empty_manifest_terminate_build 0 +Name: python-dnnlab +Version: 2.2.5 +Release: 1 +Summary: DnnLab +License: Apache Software License +URL: https://pypi.org/project/dnnlab/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/4e/05/13de5b2635ea6158bcc084e433ac34cb5ea1e7a6c523e13b5747217137d7/dnnlab-2.2.5.tar.gz +BuildArch: noarch + +Requires: python3-Cython +Requires: python3-numpy +Requires: python3-pycocotools +Requires: python3-Click +Requires: python3-opencv-python +Requires: python3-imgaug +Requires: python3-matplotlib + +%description +# DnnLab +Dnnlab is a small framework for deep learning models based on TensorFlow. + + + +It provides custom training loops for: +* Generative Models (GAN, cGan, cycleGAN) +* Image Detection (custom YOLO) + + +Additonaly custom Keras Layer: +* Non-Local-Blocks (Self-Attention) +* Squeeze and Excitation Blocks (SEBlocks) +* YOLO-Decoding Layer + +Input pipeline functionality: +* YOLO (Tfrecords to Datasets) +* YOLO data augmentation +* Generative Models (Tfrecords to Datasets) + +TensorBoard output: +* YOLO coco metrics (Precision (mAP) & Recall) +* YOLO loss (loss_class, loss_conf, loss_xywh, total_loss) +* YOLO bounding boxes +* Generative Models (Loss & Images) + + +## Requirements +TensorFlow 2.3.0 + +## Installation +Run the following to install: +```python +pip install dnnlab +``` + + + + + + + + + + + +%package -n python3-dnnlab +Summary: DnnLab +Provides: python-dnnlab +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-dnnlab +# DnnLab +Dnnlab is a small framework for deep learning models based on TensorFlow. + + + +It provides custom training loops for: +* Generative Models (GAN, cGan, cycleGAN) +* Image Detection (custom YOLO) + + +Additonaly custom Keras Layer: +* Non-Local-Blocks (Self-Attention) +* Squeeze and Excitation Blocks (SEBlocks) +* YOLO-Decoding Layer + +Input pipeline functionality: +* YOLO (Tfrecords to Datasets) +* YOLO data augmentation +* Generative Models (Tfrecords to Datasets) + +TensorBoard output: +* YOLO coco metrics (Precision (mAP) & Recall) +* YOLO loss (loss_class, loss_conf, loss_xywh, total_loss) +* YOLO bounding boxes +* Generative Models (Loss & Images) + + +## Requirements +TensorFlow 2.3.0 + +## Installation +Run the following to install: +```python +pip install dnnlab +``` + + + + + + + + + + + +%package help +Summary: Development documents and examples for dnnlab +Provides: python3-dnnlab-doc +%description help +# DnnLab +Dnnlab is a small framework for deep learning models based on TensorFlow. + + + +It provides custom training loops for: +* Generative Models (GAN, cGan, cycleGAN) +* Image Detection (custom YOLO) + + +Additonaly custom Keras Layer: +* Non-Local-Blocks (Self-Attention) +* Squeeze and Excitation Blocks (SEBlocks) +* YOLO-Decoding Layer + +Input pipeline functionality: +* YOLO (Tfrecords to Datasets) +* YOLO data augmentation +* Generative Models (Tfrecords to Datasets) + +TensorBoard output: +* YOLO coco metrics (Precision (mAP) & Recall) +* YOLO loss (loss_class, loss_conf, loss_xywh, total_loss) +* YOLO bounding boxes +* Generative Models (Loss & Images) + + +## Requirements +TensorFlow 2.3.0 + +## Installation +Run the following to install: +```python +pip install dnnlab +``` + + + + + + + + + + + +%prep +%autosetup -n dnnlab-2.2.5 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-dnnlab -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon May 29 2023 Python_Bot - 2.2.5-1 +- Package Spec generated -- cgit v1.2.3