summaryrefslogtreecommitdiff
path: root/python-do-mpc.spec
blob: f87e02fe4d701d3558bc024a0523ddf7e02a6cb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
%global _empty_manifest_terminate_build 0
Name:		python-do-mpc
Version:	4.6.0
Release:	1
Summary:	please add a summary manually as the author left a blank one
License:	GNU Lesser General Public License version 3
URL:		https://www.do-mpc.com
Source0:	https://mirrors.aliyun.com/pypi/web/packages/fe/2f/031e03849149aa72d51df399cd98b63477f34317fb10e1e6915cdedbbbec/do_mpc-4.6.0.tar.gz
BuildArch:	noarch

Requires:	python3-casadi
Requires:	python3-numpy
Requires:	python3-matplotlib

%description
<img align="left" width="30%" hspace="2%" src="https://raw.githubusercontent.com/do-mpc/do-mpc/master/documentation/source/static/dompc_var_02_rtd_blue.png">

# Model predictive control python toolbox

[![Documentation Status](https://readthedocs.org/projects/do-mpc/badge/?version=latest)](https://www.do-mpc.com)
[![Build Status](https://github.com/do-mpc/do-mpc/actions/workflows/pythontest.yml/badge.svg?branch=develop)](https://github.com/do-mpc/do-mpc/actions/workflows/pythontest.yml)
[![PyPI version](https://badge.fury.io/py/do-mpc.svg)](https://badge.fury.io/py/do-mpc)
[![awesome](https://img.shields.io/badge/awesome-yes-brightgreen.svg?style=flat-square)](https://github.com/do-mpc/do-mpc)

**do-mpc** is a comprehensive open-source toolbox for robust **model predictive control (MPC)**
and **moving horizon estimation (MHE)**.
**do-mpc** enables the efficient formulation and solution of control and estimation problems for nonlinear systems,
including tools to deal with uncertainty and time discretization.
The modular structure of **do-mpc** contains simulation, estimation and control components
that can be easily extended and combined to fit many different applications.

In summary, **do-mpc** offers the following features:

* nonlinear and economic model predictive control
* support for differential algebraic equations (DAE)
* time discretization with orthogonal collocation on finite elements
* robust multi-stage model predictive control
* moving horizon state and parameter estimation
* modular design that can be easily extended

The **do-mpc** software is Python based and works therefore on any OS with a Python 3.x distribution. **do-mpc** has been developed by Sergio Lucia and Alexandru Tatulea at the DYN chair of the TU Dortmund lead by Sebastian Engell. The development is continued at the [Laboratory of Process Automation Systems](https://pas.bci.tu-dortmund.de) (PAS) of the TU Dortmund by Felix Fiedler and Sergio Lucia.

## Installation instructions
Installation instructions are given [here](https://www.do-mpc.com/en/latest/installation.html).

## Documentation
Please visit our extensive [documentation](https://www.do-mpc.com), kindly hosted on readthedocs.

## Citing **do-mpc**
If you use **do-mpc** for published work please cite it as:

S. Lucia, A. Tatulea-Codrean, C. Schoppmeyer, and S. Engell. Rapid development of modular and sustainable nonlinear model predictive control solutions. Control Engineering Practice, 60:51-62, 2017

Please remember to properly cite other software that you might be using too if you use **do-mpc** (e.g. CasADi, IPOPT, ...)


%package -n python3-do-mpc
Summary:	please add a summary manually as the author left a blank one
Provides:	python-do-mpc
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-do-mpc
<img align="left" width="30%" hspace="2%" src="https://raw.githubusercontent.com/do-mpc/do-mpc/master/documentation/source/static/dompc_var_02_rtd_blue.png">

# Model predictive control python toolbox

[![Documentation Status](https://readthedocs.org/projects/do-mpc/badge/?version=latest)](https://www.do-mpc.com)
[![Build Status](https://github.com/do-mpc/do-mpc/actions/workflows/pythontest.yml/badge.svg?branch=develop)](https://github.com/do-mpc/do-mpc/actions/workflows/pythontest.yml)
[![PyPI version](https://badge.fury.io/py/do-mpc.svg)](https://badge.fury.io/py/do-mpc)
[![awesome](https://img.shields.io/badge/awesome-yes-brightgreen.svg?style=flat-square)](https://github.com/do-mpc/do-mpc)

**do-mpc** is a comprehensive open-source toolbox for robust **model predictive control (MPC)**
and **moving horizon estimation (MHE)**.
**do-mpc** enables the efficient formulation and solution of control and estimation problems for nonlinear systems,
including tools to deal with uncertainty and time discretization.
The modular structure of **do-mpc** contains simulation, estimation and control components
that can be easily extended and combined to fit many different applications.

In summary, **do-mpc** offers the following features:

* nonlinear and economic model predictive control
* support for differential algebraic equations (DAE)
* time discretization with orthogonal collocation on finite elements
* robust multi-stage model predictive control
* moving horizon state and parameter estimation
* modular design that can be easily extended

The **do-mpc** software is Python based and works therefore on any OS with a Python 3.x distribution. **do-mpc** has been developed by Sergio Lucia and Alexandru Tatulea at the DYN chair of the TU Dortmund lead by Sebastian Engell. The development is continued at the [Laboratory of Process Automation Systems](https://pas.bci.tu-dortmund.de) (PAS) of the TU Dortmund by Felix Fiedler and Sergio Lucia.

## Installation instructions
Installation instructions are given [here](https://www.do-mpc.com/en/latest/installation.html).

## Documentation
Please visit our extensive [documentation](https://www.do-mpc.com), kindly hosted on readthedocs.

## Citing **do-mpc**
If you use **do-mpc** for published work please cite it as:

S. Lucia, A. Tatulea-Codrean, C. Schoppmeyer, and S. Engell. Rapid development of modular and sustainable nonlinear model predictive control solutions. Control Engineering Practice, 60:51-62, 2017

Please remember to properly cite other software that you might be using too if you use **do-mpc** (e.g. CasADi, IPOPT, ...)


%package help
Summary:	Development documents and examples for do-mpc
Provides:	python3-do-mpc-doc
%description help
<img align="left" width="30%" hspace="2%" src="https://raw.githubusercontent.com/do-mpc/do-mpc/master/documentation/source/static/dompc_var_02_rtd_blue.png">

# Model predictive control python toolbox

[![Documentation Status](https://readthedocs.org/projects/do-mpc/badge/?version=latest)](https://www.do-mpc.com)
[![Build Status](https://github.com/do-mpc/do-mpc/actions/workflows/pythontest.yml/badge.svg?branch=develop)](https://github.com/do-mpc/do-mpc/actions/workflows/pythontest.yml)
[![PyPI version](https://badge.fury.io/py/do-mpc.svg)](https://badge.fury.io/py/do-mpc)
[![awesome](https://img.shields.io/badge/awesome-yes-brightgreen.svg?style=flat-square)](https://github.com/do-mpc/do-mpc)

**do-mpc** is a comprehensive open-source toolbox for robust **model predictive control (MPC)**
and **moving horizon estimation (MHE)**.
**do-mpc** enables the efficient formulation and solution of control and estimation problems for nonlinear systems,
including tools to deal with uncertainty and time discretization.
The modular structure of **do-mpc** contains simulation, estimation and control components
that can be easily extended and combined to fit many different applications.

In summary, **do-mpc** offers the following features:

* nonlinear and economic model predictive control
* support for differential algebraic equations (DAE)
* time discretization with orthogonal collocation on finite elements
* robust multi-stage model predictive control
* moving horizon state and parameter estimation
* modular design that can be easily extended

The **do-mpc** software is Python based and works therefore on any OS with a Python 3.x distribution. **do-mpc** has been developed by Sergio Lucia and Alexandru Tatulea at the DYN chair of the TU Dortmund lead by Sebastian Engell. The development is continued at the [Laboratory of Process Automation Systems](https://pas.bci.tu-dortmund.de) (PAS) of the TU Dortmund by Felix Fiedler and Sergio Lucia.

## Installation instructions
Installation instructions are given [here](https://www.do-mpc.com/en/latest/installation.html).

## Documentation
Please visit our extensive [documentation](https://www.do-mpc.com), kindly hosted on readthedocs.

## Citing **do-mpc**
If you use **do-mpc** for published work please cite it as:

S. Lucia, A. Tatulea-Codrean, C. Schoppmeyer, and S. Engell. Rapid development of modular and sustainable nonlinear model predictive control solutions. Control Engineering Practice, 60:51-62, 2017

Please remember to properly cite other software that you might be using too if you use **do-mpc** (e.g. CasADi, IPOPT, ...)


%prep
%autosetup -n do_mpc-4.6.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-do-mpc -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 4.6.0-1
- Package Spec generated