diff options
author | CoprDistGit <infra@openeuler.org> | 2023-04-10 10:23:32 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-04-10 10:23:32 +0000 |
commit | 50e872d5919a7406cf8971b5fd8e056c478a5ae2 (patch) | |
tree | f0f7a2823546f96fa7d875db5b84a4f3d928375d | |
parent | aaed7d883334018cb3c12b8a6e9c4bdff838d2de (diff) |
automatic import of python-dopamine-rl
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-dopamine-rl.spec | 620 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 622 insertions, 0 deletions
@@ -0,0 +1 @@ +/dopamine_rl-4.0.6.tar.gz diff --git a/python-dopamine-rl.spec b/python-dopamine-rl.spec new file mode 100644 index 0000000..652308d --- /dev/null +++ b/python-dopamine-rl.spec @@ -0,0 +1,620 @@ +%global _empty_manifest_terminate_build 0 +Name: python-dopamine-rl +Version: 4.0.6 +Release: 1 +Summary: Dopamine: A framework for flexible Reinforcement Learning research +License: Apache 2.0 +URL: https://github.com/google/dopamine +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ec/ec/ab07ca64802f209f7dc23a653c91015fb7459fba60866279684ded589725/dopamine_rl-4.0.6.tar.gz +BuildArch: noarch + +Requires: python3-tensorflow +Requires: python3-gin-config +Requires: python3-absl-py +Requires: python3-opencv-python +Requires: python3-gym +Requires: python3-flax +Requires: python3-jax +Requires: python3-jaxlib +Requires: python3-Pillow +Requires: python3-numpy +Requires: python3-pygame +Requires: python3-pandas +Requires: python3-tf-slim +Requires: python3-tensorflow-probability + +%description +# Dopamine +[Getting Started](#getting-started) | +[Docs][docs] | +[Baseline Results][baselines] | +[Changelist](https://google.github.io/dopamine/docs/changelist) + +<div align="center"> + <img src="https://google.github.io/dopamine/images/dopamine_logo.png"><br><br> +</div> + +Dopamine is a research framework for fast prototyping of reinforcement learning +algorithms. It aims to fill the need for a small, easily grokked codebase in +which users can freely experiment with wild ideas (speculative research). + +Our design principles are: + +* _Easy experimentation_: Make it easy for new users to run benchmark + experiments. +* _Flexible development_: Make it easy for new users to try out research ideas. +* _Compact and reliable_: Provide implementations for a few, battle-tested + algorithms. +* _Reproducible_: Facilitate reproducibility in results. In particular, our + setup follows the recommendations given by + [Machado et al. (2018)][machado]. + +Dopamine supports the following agents, implemented with jax: + +* DQN ([Mnih et al., 2015][dqn]) +* C51 ([Bellemare et al., 2017][c51]) +* Rainbow ([Hessel et al., 2018][rainbow]) +* IQN ([Dabney et al., 2018][iqn]) +* SAC ([Haarnoja et al., 2018][sac]) + +For more information on the available agents, see the [docs](https://google.github.io/dopamine/docs). + +Many of these agents also have a tensorflow (legacy) implementation, though +newly added agents are likely to be jax-only. + +This is not an official Google product. + +## Getting Started + + +We provide docker containers for using Dopamine. +Instructions can be found [here](https://google.github.io/dopamine/docker/). + +Alternatively, Dopamine can be installed from source (preferred) or installed +with pip. For either of these methods, continue reading at prerequisites. + +### Prerequisites + +Dopamine supports Atari environments and Mujoco environments. Install the +environments you intend to use before you install Dopamine: + +**Atari** + +1. Install the atari roms following the instructions from +[atari-py](https://github.com/openai/atari-py#roms). +2. `pip install ale-py` (we recommend using a [virtual environment](virtualenv)): +3. `unzip $ROM_DIR/ROMS.zip -d $ROM_DIR && ale-import-roms $ROM_DIR/ROMS` +(replace $ROM_DIR with the directory you extracted the ROMs to). + +**Mujoco** + +1. Install Mujoco and get a license +[here](https://github.com/openai/mujoco-py#install-mujoco). +2. Run `pip install mujoco-py` (we recommend using a +[virtual environment](virtualenv)). + +### Installing from Source + + +The most common way to use Dopamine is to install it from source and modify +the source code directly: + +``` +git clone https://github.com/google/dopamine +``` + +After cloning, install dependencies: + +``` +pip install -r dopamine/requirements.txt +``` + +Dopamine supports tensorflow (legacy) and jax (actively maintained) agents. +View the [Tensorflow documentation](https://www.tensorflow.org/install) for +more information on installing tensorflow. + +Note: We recommend using a [virtual environment](virtualenv) when working with Dopamine. + +### Installing with Pip + +Note: We strongly recommend installing from source for most users. + +Installing with pip is simple, but Dopamine is designed to be modified +directly. We recommend installing from source for writing your own experiments. + +``` +pip install dopamine-rl +``` + +### Running tests + +You can test whether the installation was successful by running the following +from the dopamine root directory. + +``` +export PYTHONPATH=$PYTHONPATH:$PWD +python -m tests.dopamine.atari_init_test +``` + +## Next Steps + +View the [docs][docs] for more information on training agents. + +We supply [baselines][baselines] for each Dopamine agent. + +We also provide a set of [Colaboratory notebooks](https://github.com/google/dopamine/tree/master/dopamine/colab) +which demonstrate how to use Dopamine. + +## References + +[Bellemare et al., *The Arcade Learning Environment: An evaluation platform for +general agents*. Journal of Artificial Intelligence Research, 2013.][ale] + +[Machado et al., *Revisiting the Arcade Learning Environment: Evaluation +Protocols and Open Problems for General Agents*, Journal of Artificial +Intelligence Research, 2018.][machado] + +[Hessel et al., *Rainbow: Combining Improvements in Deep Reinforcement Learning*. +Proceedings of the AAAI Conference on Artificial Intelligence, 2018.][rainbow] + +[Mnih et al., *Human-level Control through Deep Reinforcement Learning*. Nature, +2015.][dqn] + +[Schaul et al., *Prioritized Experience Replay*. Proceedings of the International +Conference on Learning Representations, 2016.][prioritized_replay] + +[Haarnoja et al., *Soft Actor-Critic Algorithms and Applications*, +arXiv preprint arXiv:1812.05905, 2018.][sac] + +## Giving credit + +If you use Dopamine in your work, we ask that you cite our +[white paper][dopamine_paper]. Here is an example BibTeX entry: + +``` +@article{castro18dopamine, + author = {Pablo Samuel Castro and + Subhodeep Moitra and + Carles Gelada and + Saurabh Kumar and + Marc G. Bellemare}, + title = {Dopamine: {A} {R}esearch {F}ramework for {D}eep {R}einforcement {L}earning}, + year = {2018}, + url = {http://arxiv.org/abs/1812.06110}, + archivePrefix = {arXiv} +} +``` + + + +[docs]: https://google.github.io/dopamine/docs/ +[baselines]: https://google.github.io/dopamine/baselines +[machado]: https://jair.org/index.php/jair/article/view/11182 +[ale]: https://jair.org/index.php/jair/article/view/10819 +[dqn]: https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf +[a3c]: http://proceedings.mlr.press/v48/mniha16.html +[prioritized_replay]: https://arxiv.org/abs/1511.05952 +[c51]: http://proceedings.mlr.press/v70/bellemare17a.html +[rainbow]: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17204/16680 +[iqn]: https://arxiv.org/abs/1806.06923 +[sac]: https://arxiv.org/abs/1812.05905 +[dopamine_paper]: https://arxiv.org/abs/1812.06110 +[vitualenv]: https://docs.python.org/3/library/venv.html#creating-virtual-environments + + + + +%package -n python3-dopamine-rl +Summary: Dopamine: A framework for flexible Reinforcement Learning research +Provides: python-dopamine-rl +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-dopamine-rl +# Dopamine +[Getting Started](#getting-started) | +[Docs][docs] | +[Baseline Results][baselines] | +[Changelist](https://google.github.io/dopamine/docs/changelist) + +<div align="center"> + <img src="https://google.github.io/dopamine/images/dopamine_logo.png"><br><br> +</div> + +Dopamine is a research framework for fast prototyping of reinforcement learning +algorithms. It aims to fill the need for a small, easily grokked codebase in +which users can freely experiment with wild ideas (speculative research). + +Our design principles are: + +* _Easy experimentation_: Make it easy for new users to run benchmark + experiments. +* _Flexible development_: Make it easy for new users to try out research ideas. +* _Compact and reliable_: Provide implementations for a few, battle-tested + algorithms. +* _Reproducible_: Facilitate reproducibility in results. In particular, our + setup follows the recommendations given by + [Machado et al. (2018)][machado]. + +Dopamine supports the following agents, implemented with jax: + +* DQN ([Mnih et al., 2015][dqn]) +* C51 ([Bellemare et al., 2017][c51]) +* Rainbow ([Hessel et al., 2018][rainbow]) +* IQN ([Dabney et al., 2018][iqn]) +* SAC ([Haarnoja et al., 2018][sac]) + +For more information on the available agents, see the [docs](https://google.github.io/dopamine/docs). + +Many of these agents also have a tensorflow (legacy) implementation, though +newly added agents are likely to be jax-only. + +This is not an official Google product. + +## Getting Started + + +We provide docker containers for using Dopamine. +Instructions can be found [here](https://google.github.io/dopamine/docker/). + +Alternatively, Dopamine can be installed from source (preferred) or installed +with pip. For either of these methods, continue reading at prerequisites. + +### Prerequisites + +Dopamine supports Atari environments and Mujoco environments. Install the +environments you intend to use before you install Dopamine: + +**Atari** + +1. Install the atari roms following the instructions from +[atari-py](https://github.com/openai/atari-py#roms). +2. `pip install ale-py` (we recommend using a [virtual environment](virtualenv)): +3. `unzip $ROM_DIR/ROMS.zip -d $ROM_DIR && ale-import-roms $ROM_DIR/ROMS` +(replace $ROM_DIR with the directory you extracted the ROMs to). + +**Mujoco** + +1. Install Mujoco and get a license +[here](https://github.com/openai/mujoco-py#install-mujoco). +2. Run `pip install mujoco-py` (we recommend using a +[virtual environment](virtualenv)). + +### Installing from Source + + +The most common way to use Dopamine is to install it from source and modify +the source code directly: + +``` +git clone https://github.com/google/dopamine +``` + +After cloning, install dependencies: + +``` +pip install -r dopamine/requirements.txt +``` + +Dopamine supports tensorflow (legacy) and jax (actively maintained) agents. +View the [Tensorflow documentation](https://www.tensorflow.org/install) for +more information on installing tensorflow. + +Note: We recommend using a [virtual environment](virtualenv) when working with Dopamine. + +### Installing with Pip + +Note: We strongly recommend installing from source for most users. + +Installing with pip is simple, but Dopamine is designed to be modified +directly. We recommend installing from source for writing your own experiments. + +``` +pip install dopamine-rl +``` + +### Running tests + +You can test whether the installation was successful by running the following +from the dopamine root directory. + +``` +export PYTHONPATH=$PYTHONPATH:$PWD +python -m tests.dopamine.atari_init_test +``` + +## Next Steps + +View the [docs][docs] for more information on training agents. + +We supply [baselines][baselines] for each Dopamine agent. + +We also provide a set of [Colaboratory notebooks](https://github.com/google/dopamine/tree/master/dopamine/colab) +which demonstrate how to use Dopamine. + +## References + +[Bellemare et al., *The Arcade Learning Environment: An evaluation platform for +general agents*. Journal of Artificial Intelligence Research, 2013.][ale] + +[Machado et al., *Revisiting the Arcade Learning Environment: Evaluation +Protocols and Open Problems for General Agents*, Journal of Artificial +Intelligence Research, 2018.][machado] + +[Hessel et al., *Rainbow: Combining Improvements in Deep Reinforcement Learning*. +Proceedings of the AAAI Conference on Artificial Intelligence, 2018.][rainbow] + +[Mnih et al., *Human-level Control through Deep Reinforcement Learning*. Nature, +2015.][dqn] + +[Schaul et al., *Prioritized Experience Replay*. Proceedings of the International +Conference on Learning Representations, 2016.][prioritized_replay] + +[Haarnoja et al., *Soft Actor-Critic Algorithms and Applications*, +arXiv preprint arXiv:1812.05905, 2018.][sac] + +## Giving credit + +If you use Dopamine in your work, we ask that you cite our +[white paper][dopamine_paper]. Here is an example BibTeX entry: + +``` +@article{castro18dopamine, + author = {Pablo Samuel Castro and + Subhodeep Moitra and + Carles Gelada and + Saurabh Kumar and + Marc G. Bellemare}, + title = {Dopamine: {A} {R}esearch {F}ramework for {D}eep {R}einforcement {L}earning}, + year = {2018}, + url = {http://arxiv.org/abs/1812.06110}, + archivePrefix = {arXiv} +} +``` + + + +[docs]: https://google.github.io/dopamine/docs/ +[baselines]: https://google.github.io/dopamine/baselines +[machado]: https://jair.org/index.php/jair/article/view/11182 +[ale]: https://jair.org/index.php/jair/article/view/10819 +[dqn]: https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf +[a3c]: http://proceedings.mlr.press/v48/mniha16.html +[prioritized_replay]: https://arxiv.org/abs/1511.05952 +[c51]: http://proceedings.mlr.press/v70/bellemare17a.html +[rainbow]: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17204/16680 +[iqn]: https://arxiv.org/abs/1806.06923 +[sac]: https://arxiv.org/abs/1812.05905 +[dopamine_paper]: https://arxiv.org/abs/1812.06110 +[vitualenv]: https://docs.python.org/3/library/venv.html#creating-virtual-environments + + + + +%package help +Summary: Development documents and examples for dopamine-rl +Provides: python3-dopamine-rl-doc +%description help +# Dopamine +[Getting Started](#getting-started) | +[Docs][docs] | +[Baseline Results][baselines] | +[Changelist](https://google.github.io/dopamine/docs/changelist) + +<div align="center"> + <img src="https://google.github.io/dopamine/images/dopamine_logo.png"><br><br> +</div> + +Dopamine is a research framework for fast prototyping of reinforcement learning +algorithms. It aims to fill the need for a small, easily grokked codebase in +which users can freely experiment with wild ideas (speculative research). + +Our design principles are: + +* _Easy experimentation_: Make it easy for new users to run benchmark + experiments. +* _Flexible development_: Make it easy for new users to try out research ideas. +* _Compact and reliable_: Provide implementations for a few, battle-tested + algorithms. +* _Reproducible_: Facilitate reproducibility in results. In particular, our + setup follows the recommendations given by + [Machado et al. (2018)][machado]. + +Dopamine supports the following agents, implemented with jax: + +* DQN ([Mnih et al., 2015][dqn]) +* C51 ([Bellemare et al., 2017][c51]) +* Rainbow ([Hessel et al., 2018][rainbow]) +* IQN ([Dabney et al., 2018][iqn]) +* SAC ([Haarnoja et al., 2018][sac]) + +For more information on the available agents, see the [docs](https://google.github.io/dopamine/docs). + +Many of these agents also have a tensorflow (legacy) implementation, though +newly added agents are likely to be jax-only. + +This is not an official Google product. + +## Getting Started + + +We provide docker containers for using Dopamine. +Instructions can be found [here](https://google.github.io/dopamine/docker/). + +Alternatively, Dopamine can be installed from source (preferred) or installed +with pip. For either of these methods, continue reading at prerequisites. + +### Prerequisites + +Dopamine supports Atari environments and Mujoco environments. Install the +environments you intend to use before you install Dopamine: + +**Atari** + +1. Install the atari roms following the instructions from +[atari-py](https://github.com/openai/atari-py#roms). +2. `pip install ale-py` (we recommend using a [virtual environment](virtualenv)): +3. `unzip $ROM_DIR/ROMS.zip -d $ROM_DIR && ale-import-roms $ROM_DIR/ROMS` +(replace $ROM_DIR with the directory you extracted the ROMs to). + +**Mujoco** + +1. Install Mujoco and get a license +[here](https://github.com/openai/mujoco-py#install-mujoco). +2. Run `pip install mujoco-py` (we recommend using a +[virtual environment](virtualenv)). + +### Installing from Source + + +The most common way to use Dopamine is to install it from source and modify +the source code directly: + +``` +git clone https://github.com/google/dopamine +``` + +After cloning, install dependencies: + +``` +pip install -r dopamine/requirements.txt +``` + +Dopamine supports tensorflow (legacy) and jax (actively maintained) agents. +View the [Tensorflow documentation](https://www.tensorflow.org/install) for +more information on installing tensorflow. + +Note: We recommend using a [virtual environment](virtualenv) when working with Dopamine. + +### Installing with Pip + +Note: We strongly recommend installing from source for most users. + +Installing with pip is simple, but Dopamine is designed to be modified +directly. We recommend installing from source for writing your own experiments. + +``` +pip install dopamine-rl +``` + +### Running tests + +You can test whether the installation was successful by running the following +from the dopamine root directory. + +``` +export PYTHONPATH=$PYTHONPATH:$PWD +python -m tests.dopamine.atari_init_test +``` + +## Next Steps + +View the [docs][docs] for more information on training agents. + +We supply [baselines][baselines] for each Dopamine agent. + +We also provide a set of [Colaboratory notebooks](https://github.com/google/dopamine/tree/master/dopamine/colab) +which demonstrate how to use Dopamine. + +## References + +[Bellemare et al., *The Arcade Learning Environment: An evaluation platform for +general agents*. Journal of Artificial Intelligence Research, 2013.][ale] + +[Machado et al., *Revisiting the Arcade Learning Environment: Evaluation +Protocols and Open Problems for General Agents*, Journal of Artificial +Intelligence Research, 2018.][machado] + +[Hessel et al., *Rainbow: Combining Improvements in Deep Reinforcement Learning*. +Proceedings of the AAAI Conference on Artificial Intelligence, 2018.][rainbow] + +[Mnih et al., *Human-level Control through Deep Reinforcement Learning*. Nature, +2015.][dqn] + +[Schaul et al., *Prioritized Experience Replay*. Proceedings of the International +Conference on Learning Representations, 2016.][prioritized_replay] + +[Haarnoja et al., *Soft Actor-Critic Algorithms and Applications*, +arXiv preprint arXiv:1812.05905, 2018.][sac] + +## Giving credit + +If you use Dopamine in your work, we ask that you cite our +[white paper][dopamine_paper]. Here is an example BibTeX entry: + +``` +@article{castro18dopamine, + author = {Pablo Samuel Castro and + Subhodeep Moitra and + Carles Gelada and + Saurabh Kumar and + Marc G. Bellemare}, + title = {Dopamine: {A} {R}esearch {F}ramework for {D}eep {R}einforcement {L}earning}, + year = {2018}, + url = {http://arxiv.org/abs/1812.06110}, + archivePrefix = {arXiv} +} +``` + + + +[docs]: https://google.github.io/dopamine/docs/ +[baselines]: https://google.github.io/dopamine/baselines +[machado]: https://jair.org/index.php/jair/article/view/11182 +[ale]: https://jair.org/index.php/jair/article/view/10819 +[dqn]: https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf +[a3c]: http://proceedings.mlr.press/v48/mniha16.html +[prioritized_replay]: https://arxiv.org/abs/1511.05952 +[c51]: http://proceedings.mlr.press/v70/bellemare17a.html +[rainbow]: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17204/16680 +[iqn]: https://arxiv.org/abs/1806.06923 +[sac]: https://arxiv.org/abs/1812.05905 +[dopamine_paper]: https://arxiv.org/abs/1812.06110 +[vitualenv]: https://docs.python.org/3/library/venv.html#creating-virtual-environments + + + + +%prep +%autosetup -n dopamine-rl-4.0.6 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-dopamine-rl -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 4.0.6-1 +- Package Spec generated @@ -0,0 +1 @@ +358f021fdfedb26f47f313ab2de9a71b dopamine_rl-4.0.6.tar.gz |