1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
%global _empty_manifest_terminate_build 0
Name: python-dpu-utils
Version: 0.6.1
Release: 1
Summary: Python utilities used by Deep Procedural Intelligence
License: MIT
URL: https://github.com/microsoft/dpu-utils
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1d/6b/0507dd6dbf64d015e67d27b6191cd1239c89639efeca8165099ac39d4450/dpu_utils-0.6.1.tar.gz
BuildArch: noarch
Requires: python3-azure-storage-blob
Requires: python3-azure-identity
Requires: python3-numpy
Requires: python3-docopt
Requires: python3-tqdm
Requires: python3-SetSimilaritySearch
Requires: python3-sentencepiece
Requires: python3-cffi
Requires: python3-regex
%description
# DPU Utilities 
[](https://deepproceduralintelligence.visualstudio.com/dpu-utils/_build/latest?definitionId=3)
This contains a set of utilities used across projects of the [DPU team](https://www.microsoft.com/en-us/research/project/program/).
## Python
Stored in the `python` subdirectory, published as the `dpu-utils` package.
### Installation
```bash
pip install dpu-utils
```
OR via the community-maintained Conda recipe:
```bash
conda install -c conda-forge dpu-utils
```
### Overview
Below you can find an overview of the utilities included. Detailed documentation
is provided at the docstring of each class.
##### Generic Utilities `dpu_utils.utils`
* [`ChunkWriter`](python/dpu_utils/utils/chunkwriter.py) provides a convenient API for writing output in multiple parts (chunks).
* [`RichPath`](python/dpu_utils/utils/richpath.py) an API that abstract local and Azure Blob paths in your code.
* [`*Iterator`](python/dpu_utils/utils/iterators.py) Wrappers that can parallelize and shuffle iterators.
* [`{load,save}_json[l]_gz`](python/dpu_utils/utils/dataloading.py) convenience API for loading and writing `.json[l].gz` files.
* [`git_tag_run`](python/dpu_utils/utils/gitlog.py) tags the current working directory git the state of the code.
* [`run_and_debug`](python/dpu_utils/utils/debughelper.py) when an exception happens, start a debug session. Usually a wrapper of `__main__`.
##### General Machine Learning Utilities `dpu_utils.mlutils`
* [`Vocabulary`](python/dpu_utils/mlutils/vocabulary.py) map elements into unique integer ids and back.
Commonly used in machine learning models that work over discrete data (e.g.
words in NLP). Contains methods for converting an list of tokens into their
"tensorized" for of integer ids.
* [`BpeVocabulary`](python/dpu_utils/mlutils/bpevocabulary.py) a vocabulary for machine learning models that employs BPE (via `sentencepiece`).
* [`CharTensorizer`](python/dpu_utils/mlutils/chartensorizer.py) convert character sequences into into tensors, commonly used
in machine learning models whose input is a list of characters.
##### Code-related Utilities `dpu_utils.codeutils`
* [`split_identifier_into_parts()`](python/dpu_utils/codeutils/identifiersplitting.py) split identifiers into subtokens on CamelCase and snake_case.
* [`Lattice`](python/dpu_utils/codeutils/lattice/lattice.py), [`CSharpLattice`](python/dpu_utils/codeutils/lattice/csharplattice.py) represent lattices and useful operations on lattices in Python.
* [`get_language_keywords()`](python/dpu_utils/codeutils/keywords/keywordlist.py) an API to retrieve the keyword tokens for many programming languages.
* [`language_candidates_from_suffix()`](python/dpu_utils/codeutils/filesuffix.py) a function to retrieve the candidate language given the file suffix.
* [`deduplication.DuplicateDetector`](python/dpu_utils/codeutils/deduplication/deduplication.py) API to detects (near)duplicates in codebases.
See also [here](#approximate-duplicate-code-detection) for a command line tool.
* [`treesitter.parser_for`](python/dpu_utils/codeutils/treesitter/parser.py) get [Tree-sitter](https://tree-sitter.github.io/tree-sitter/) parser by language name.
##### TensorFlow 1.x Utilities `dpu_utils.tfutils`
* [`get_activation`](python/dpu_utils/tfutils/activation.py) retrieve activations function by name.
* [`GradRatioLoggingOptimizer`](python/dpu_utils/tfutils/gradratiologgingoptimizer.py) a wrapper around optimizers that logs the ratios of grad norms to parameter norms.
* [`TFVariableSaver`](python/dpu_utils/tfutils/tfvariablesaver.py) save TF variables in an object that can be pickled.
Unsorted segment operations following TensorFlow's [`unsorted_segment_sum`](https://www.tensorflow.org/api_docs/python/tf/math/unsorted_segment_sum) operations:
* [`unsorted_segment_logsumexp`](python/dpu_utils/tfutils/unsortedsegmentops.py)
* [`unsorted_segment_log_softmax`](python/dpu_utils/tfutils/unsortedsegmentops.py)
* [`unsorted_segment_softmax`](python/dpu_utils/tfutils/unsortedsegmentops.py)
##### TensorFlow 2.x Utilities `dpu_utils.tf2utils`
* [`get_activation_function_by_name`](python/dpu_utils/tf2utils/activation.py) retrieve activation functions by name.
* [`gelu`](python/dpu_utils/tf2utils/activation.py) The GeLU activation function.
* [`MLP`](python/dpu_utils/tf2utils/mlp.py) An MLP layer.
Unsorted segment operations following TensorFlow's [`unsorted_segment_sum`](https://www.tensorflow.org/api_docs/python/tf/math/unsorted_segment_sum) operations:
* [`unsorted_segment_logsumexp`](python/dpu_utils/tf2utils/unsorted_segment_ops.py)
* [`unsorted_segment_log_softmax`](python/dpu_utils/tf2utils/unsorted_segment_ops.py)
* [`unsorted_segment_softmax`](python/dpu_utils/tf2utils/unsorted_segment_ops.py)
##### TensorFlow Models `dpu_utils.tfmodels`
* [`SparseGGNN`](python/dpu_utils/tfmodels/sparsegnn.py) a sparse GGNN implementation.
* [`AsyncGGNN`](python/dpu_utils/tfmodels/asyncgnn.py) an asynchronous GGNN implementation.
These models have not been tested with TF 2.0.
##### PyTorch Utilities `dpu_utils.ptutils`
* [`BaseComponent`](python/dpu_utils/ptutils/basecomponent.py) a wrapper abstract class around `nn.Module` that
takes care of essential elements of most neural network components.
* [`ComponentTrainer`](python/dpu_utils/ptutils/basecomponent.py) a training loop for `BaseComponent`s.
### Command-line tools
#### Approximate Duplicate Code Detection
You can use the `deduplicationcli` command to detect duplicates in pre-processed source code, by invoking
```bash
deduplicationcli DATA_PATH OUT_JSON
```
where `DATA_PATH` is a file containing tokenized `.jsonl.gz` files and `OUT_JSON` is the target output file.
For more options look at `--help`.
An exact (but usually slower) version of this can be found [here](https://github.com/Microsoft/near-duplicate-code-detector)
along with code to tokenize Java, C#, Python and JavaScript into the relevant formats.
### Tests
#### Run the unit tests
```bash
python setup.py test
```
#### Generate code coverage reports
```bash
# pip install coverage
coverage run --source dpu_utils/ setup.py test && \
coverage html
```
The resulting HTML file will be in `htmlcov/index.html`.
## .NET
Stored in the `dotnet` subdirectory.
Generic Utilities:
* `Microsoft.Research.DPU.Utils.RichPath`: a convenient way of using both paths and Azure paths in your code.
Code-related Utilities:
* `Microsoft.Research.DPU.CSharpSourceGraphExtraction`: infrastructure to extract Program Graphs from C# projects.
# Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
%package -n python3-dpu-utils
Summary: Python utilities used by Deep Procedural Intelligence
Provides: python-dpu-utils
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dpu-utils
# DPU Utilities 
[](https://deepproceduralintelligence.visualstudio.com/dpu-utils/_build/latest?definitionId=3)
This contains a set of utilities used across projects of the [DPU team](https://www.microsoft.com/en-us/research/project/program/).
## Python
Stored in the `python` subdirectory, published as the `dpu-utils` package.
### Installation
```bash
pip install dpu-utils
```
OR via the community-maintained Conda recipe:
```bash
conda install -c conda-forge dpu-utils
```
### Overview
Below you can find an overview of the utilities included. Detailed documentation
is provided at the docstring of each class.
##### Generic Utilities `dpu_utils.utils`
* [`ChunkWriter`](python/dpu_utils/utils/chunkwriter.py) provides a convenient API for writing output in multiple parts (chunks).
* [`RichPath`](python/dpu_utils/utils/richpath.py) an API that abstract local and Azure Blob paths in your code.
* [`*Iterator`](python/dpu_utils/utils/iterators.py) Wrappers that can parallelize and shuffle iterators.
* [`{load,save}_json[l]_gz`](python/dpu_utils/utils/dataloading.py) convenience API for loading and writing `.json[l].gz` files.
* [`git_tag_run`](python/dpu_utils/utils/gitlog.py) tags the current working directory git the state of the code.
* [`run_and_debug`](python/dpu_utils/utils/debughelper.py) when an exception happens, start a debug session. Usually a wrapper of `__main__`.
##### General Machine Learning Utilities `dpu_utils.mlutils`
* [`Vocabulary`](python/dpu_utils/mlutils/vocabulary.py) map elements into unique integer ids and back.
Commonly used in machine learning models that work over discrete data (e.g.
words in NLP). Contains methods for converting an list of tokens into their
"tensorized" for of integer ids.
* [`BpeVocabulary`](python/dpu_utils/mlutils/bpevocabulary.py) a vocabulary for machine learning models that employs BPE (via `sentencepiece`).
* [`CharTensorizer`](python/dpu_utils/mlutils/chartensorizer.py) convert character sequences into into tensors, commonly used
in machine learning models whose input is a list of characters.
##### Code-related Utilities `dpu_utils.codeutils`
* [`split_identifier_into_parts()`](python/dpu_utils/codeutils/identifiersplitting.py) split identifiers into subtokens on CamelCase and snake_case.
* [`Lattice`](python/dpu_utils/codeutils/lattice/lattice.py), [`CSharpLattice`](python/dpu_utils/codeutils/lattice/csharplattice.py) represent lattices and useful operations on lattices in Python.
* [`get_language_keywords()`](python/dpu_utils/codeutils/keywords/keywordlist.py) an API to retrieve the keyword tokens for many programming languages.
* [`language_candidates_from_suffix()`](python/dpu_utils/codeutils/filesuffix.py) a function to retrieve the candidate language given the file suffix.
* [`deduplication.DuplicateDetector`](python/dpu_utils/codeutils/deduplication/deduplication.py) API to detects (near)duplicates in codebases.
See also [here](#approximate-duplicate-code-detection) for a command line tool.
* [`treesitter.parser_for`](python/dpu_utils/codeutils/treesitter/parser.py) get [Tree-sitter](https://tree-sitter.github.io/tree-sitter/) parser by language name.
##### TensorFlow 1.x Utilities `dpu_utils.tfutils`
* [`get_activation`](python/dpu_utils/tfutils/activation.py) retrieve activations function by name.
* [`GradRatioLoggingOptimizer`](python/dpu_utils/tfutils/gradratiologgingoptimizer.py) a wrapper around optimizers that logs the ratios of grad norms to parameter norms.
* [`TFVariableSaver`](python/dpu_utils/tfutils/tfvariablesaver.py) save TF variables in an object that can be pickled.
Unsorted segment operations following TensorFlow's [`unsorted_segment_sum`](https://www.tensorflow.org/api_docs/python/tf/math/unsorted_segment_sum) operations:
* [`unsorted_segment_logsumexp`](python/dpu_utils/tfutils/unsortedsegmentops.py)
* [`unsorted_segment_log_softmax`](python/dpu_utils/tfutils/unsortedsegmentops.py)
* [`unsorted_segment_softmax`](python/dpu_utils/tfutils/unsortedsegmentops.py)
##### TensorFlow 2.x Utilities `dpu_utils.tf2utils`
* [`get_activation_function_by_name`](python/dpu_utils/tf2utils/activation.py) retrieve activation functions by name.
* [`gelu`](python/dpu_utils/tf2utils/activation.py) The GeLU activation function.
* [`MLP`](python/dpu_utils/tf2utils/mlp.py) An MLP layer.
Unsorted segment operations following TensorFlow's [`unsorted_segment_sum`](https://www.tensorflow.org/api_docs/python/tf/math/unsorted_segment_sum) operations:
* [`unsorted_segment_logsumexp`](python/dpu_utils/tf2utils/unsorted_segment_ops.py)
* [`unsorted_segment_log_softmax`](python/dpu_utils/tf2utils/unsorted_segment_ops.py)
* [`unsorted_segment_softmax`](python/dpu_utils/tf2utils/unsorted_segment_ops.py)
##### TensorFlow Models `dpu_utils.tfmodels`
* [`SparseGGNN`](python/dpu_utils/tfmodels/sparsegnn.py) a sparse GGNN implementation.
* [`AsyncGGNN`](python/dpu_utils/tfmodels/asyncgnn.py) an asynchronous GGNN implementation.
These models have not been tested with TF 2.0.
##### PyTorch Utilities `dpu_utils.ptutils`
* [`BaseComponent`](python/dpu_utils/ptutils/basecomponent.py) a wrapper abstract class around `nn.Module` that
takes care of essential elements of most neural network components.
* [`ComponentTrainer`](python/dpu_utils/ptutils/basecomponent.py) a training loop for `BaseComponent`s.
### Command-line tools
#### Approximate Duplicate Code Detection
You can use the `deduplicationcli` command to detect duplicates in pre-processed source code, by invoking
```bash
deduplicationcli DATA_PATH OUT_JSON
```
where `DATA_PATH` is a file containing tokenized `.jsonl.gz` files and `OUT_JSON` is the target output file.
For more options look at `--help`.
An exact (but usually slower) version of this can be found [here](https://github.com/Microsoft/near-duplicate-code-detector)
along with code to tokenize Java, C#, Python and JavaScript into the relevant formats.
### Tests
#### Run the unit tests
```bash
python setup.py test
```
#### Generate code coverage reports
```bash
# pip install coverage
coverage run --source dpu_utils/ setup.py test && \
coverage html
```
The resulting HTML file will be in `htmlcov/index.html`.
## .NET
Stored in the `dotnet` subdirectory.
Generic Utilities:
* `Microsoft.Research.DPU.Utils.RichPath`: a convenient way of using both paths and Azure paths in your code.
Code-related Utilities:
* `Microsoft.Research.DPU.CSharpSourceGraphExtraction`: infrastructure to extract Program Graphs from C# projects.
# Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
%package help
Summary: Development documents and examples for dpu-utils
Provides: python3-dpu-utils-doc
%description help
# DPU Utilities 
[](https://deepproceduralintelligence.visualstudio.com/dpu-utils/_build/latest?definitionId=3)
This contains a set of utilities used across projects of the [DPU team](https://www.microsoft.com/en-us/research/project/program/).
## Python
Stored in the `python` subdirectory, published as the `dpu-utils` package.
### Installation
```bash
pip install dpu-utils
```
OR via the community-maintained Conda recipe:
```bash
conda install -c conda-forge dpu-utils
```
### Overview
Below you can find an overview of the utilities included. Detailed documentation
is provided at the docstring of each class.
##### Generic Utilities `dpu_utils.utils`
* [`ChunkWriter`](python/dpu_utils/utils/chunkwriter.py) provides a convenient API for writing output in multiple parts (chunks).
* [`RichPath`](python/dpu_utils/utils/richpath.py) an API that abstract local and Azure Blob paths in your code.
* [`*Iterator`](python/dpu_utils/utils/iterators.py) Wrappers that can parallelize and shuffle iterators.
* [`{load,save}_json[l]_gz`](python/dpu_utils/utils/dataloading.py) convenience API for loading and writing `.json[l].gz` files.
* [`git_tag_run`](python/dpu_utils/utils/gitlog.py) tags the current working directory git the state of the code.
* [`run_and_debug`](python/dpu_utils/utils/debughelper.py) when an exception happens, start a debug session. Usually a wrapper of `__main__`.
##### General Machine Learning Utilities `dpu_utils.mlutils`
* [`Vocabulary`](python/dpu_utils/mlutils/vocabulary.py) map elements into unique integer ids and back.
Commonly used in machine learning models that work over discrete data (e.g.
words in NLP). Contains methods for converting an list of tokens into their
"tensorized" for of integer ids.
* [`BpeVocabulary`](python/dpu_utils/mlutils/bpevocabulary.py) a vocabulary for machine learning models that employs BPE (via `sentencepiece`).
* [`CharTensorizer`](python/dpu_utils/mlutils/chartensorizer.py) convert character sequences into into tensors, commonly used
in machine learning models whose input is a list of characters.
##### Code-related Utilities `dpu_utils.codeutils`
* [`split_identifier_into_parts()`](python/dpu_utils/codeutils/identifiersplitting.py) split identifiers into subtokens on CamelCase and snake_case.
* [`Lattice`](python/dpu_utils/codeutils/lattice/lattice.py), [`CSharpLattice`](python/dpu_utils/codeutils/lattice/csharplattice.py) represent lattices and useful operations on lattices in Python.
* [`get_language_keywords()`](python/dpu_utils/codeutils/keywords/keywordlist.py) an API to retrieve the keyword tokens for many programming languages.
* [`language_candidates_from_suffix()`](python/dpu_utils/codeutils/filesuffix.py) a function to retrieve the candidate language given the file suffix.
* [`deduplication.DuplicateDetector`](python/dpu_utils/codeutils/deduplication/deduplication.py) API to detects (near)duplicates in codebases.
See also [here](#approximate-duplicate-code-detection) for a command line tool.
* [`treesitter.parser_for`](python/dpu_utils/codeutils/treesitter/parser.py) get [Tree-sitter](https://tree-sitter.github.io/tree-sitter/) parser by language name.
##### TensorFlow 1.x Utilities `dpu_utils.tfutils`
* [`get_activation`](python/dpu_utils/tfutils/activation.py) retrieve activations function by name.
* [`GradRatioLoggingOptimizer`](python/dpu_utils/tfutils/gradratiologgingoptimizer.py) a wrapper around optimizers that logs the ratios of grad norms to parameter norms.
* [`TFVariableSaver`](python/dpu_utils/tfutils/tfvariablesaver.py) save TF variables in an object that can be pickled.
Unsorted segment operations following TensorFlow's [`unsorted_segment_sum`](https://www.tensorflow.org/api_docs/python/tf/math/unsorted_segment_sum) operations:
* [`unsorted_segment_logsumexp`](python/dpu_utils/tfutils/unsortedsegmentops.py)
* [`unsorted_segment_log_softmax`](python/dpu_utils/tfutils/unsortedsegmentops.py)
* [`unsorted_segment_softmax`](python/dpu_utils/tfutils/unsortedsegmentops.py)
##### TensorFlow 2.x Utilities `dpu_utils.tf2utils`
* [`get_activation_function_by_name`](python/dpu_utils/tf2utils/activation.py) retrieve activation functions by name.
* [`gelu`](python/dpu_utils/tf2utils/activation.py) The GeLU activation function.
* [`MLP`](python/dpu_utils/tf2utils/mlp.py) An MLP layer.
Unsorted segment operations following TensorFlow's [`unsorted_segment_sum`](https://www.tensorflow.org/api_docs/python/tf/math/unsorted_segment_sum) operations:
* [`unsorted_segment_logsumexp`](python/dpu_utils/tf2utils/unsorted_segment_ops.py)
* [`unsorted_segment_log_softmax`](python/dpu_utils/tf2utils/unsorted_segment_ops.py)
* [`unsorted_segment_softmax`](python/dpu_utils/tf2utils/unsorted_segment_ops.py)
##### TensorFlow Models `dpu_utils.tfmodels`
* [`SparseGGNN`](python/dpu_utils/tfmodels/sparsegnn.py) a sparse GGNN implementation.
* [`AsyncGGNN`](python/dpu_utils/tfmodels/asyncgnn.py) an asynchronous GGNN implementation.
These models have not been tested with TF 2.0.
##### PyTorch Utilities `dpu_utils.ptutils`
* [`BaseComponent`](python/dpu_utils/ptutils/basecomponent.py) a wrapper abstract class around `nn.Module` that
takes care of essential elements of most neural network components.
* [`ComponentTrainer`](python/dpu_utils/ptutils/basecomponent.py) a training loop for `BaseComponent`s.
### Command-line tools
#### Approximate Duplicate Code Detection
You can use the `deduplicationcli` command to detect duplicates in pre-processed source code, by invoking
```bash
deduplicationcli DATA_PATH OUT_JSON
```
where `DATA_PATH` is a file containing tokenized `.jsonl.gz` files and `OUT_JSON` is the target output file.
For more options look at `--help`.
An exact (but usually slower) version of this can be found [here](https://github.com/Microsoft/near-duplicate-code-detector)
along with code to tokenize Java, C#, Python and JavaScript into the relevant formats.
### Tests
#### Run the unit tests
```bash
python setup.py test
```
#### Generate code coverage reports
```bash
# pip install coverage
coverage run --source dpu_utils/ setup.py test && \
coverage html
```
The resulting HTML file will be in `htmlcov/index.html`.
## .NET
Stored in the `dotnet` subdirectory.
Generic Utilities:
* `Microsoft.Research.DPU.Utils.RichPath`: a convenient way of using both paths and Azure paths in your code.
Code-related Utilities:
* `Microsoft.Research.DPU.CSharpSourceGraphExtraction`: infrastructure to extract Program Graphs from C# projects.
# Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
%prep
%autosetup -n dpu-utils-0.6.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dpu-utils -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.1-1
- Package Spec generated
|