1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
%global _empty_manifest_terminate_build 0
Name: python-dragoneye
Version: 0.0.77
Release: 1
Summary: Multi-cloud data scan tool
License: MIT License
URL: https://github.com/indeni/dragoneye
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a6/81/7078b571cc760fdd90df8d6f6066cc4752011d37e208bdf803ab9d0f2f91/dragoneye-0.0.77.tar.gz
BuildArch: noarch
Requires: python3-pyjq
Requires: python3-boto3
Requires: python3-PyYAML
Requires: python3-backoff
Requires: python3-requests
Requires: python3-click
Requires: python3-click-aliases
Requires: python3-oauth2client
Requires: python3-google-api-python-client
%description





# dragoneye
dragoneye is a Python tool that is used to collect data about a cloud environment using the cloud provider's APIs. It is intended to function as component in other tools who have the need to collect data quickly (multi-threaded), or as a command line to collect a snapshot of a cloud account.
dragoneye currently supports AWS (AssumeRole and AccessKey based collection) and Azure (with client secret).
# Setup
Clone this git repository, navigate to the root directory where `setup.py` is located and run:
```
pip install .
```
(note the period at the end of the command)
We recommend doing this within a virtual environment, like so:
```
python3.9 -m venv ./venv
. ./venv/bin/activate
pip install .
```
# Usage
## Programmatic Usage
Create an instance of one of the CollectRequest classes, such as AwsAccessKeyCollectRequest, AwsAssumeRoleCollectRequest, AzureCollectRequest and call the `collect` function. For example:
```python
from dragoneye import AwsScanner, AwsCloudScanSettings, AwsSessionFactory, AzureScanner, AzureCloudScanSettings, AzureAuthorizer, GcpCloudScanSettings, GcpCredentialsFactory, GcpScanner
### AWS ###
aws_settings = AwsCloudScanSettings(
commands_path='/Users/dev/python/dragoneye/aws_commands_example.yaml',
account_name='default', default_region='us-east-1', regions_filter=['us-east-1']
)
#### Using environment variables
session = AwsSessionFactory.get_session(profile_name=None, region='us-east-1') # Raises exception if authentication is unsuccessful
aws_scan_output_directory = AwsScanner(session, aws_settings).scan()
#### Using an AWS Profile
session = AwsSessionFactory.get_session(profile_name='MyProfile', region='us-east-1') # Raises exception if authentication is unsuccessful
aws_scan_output_directory = AwsScanner(session, aws_settings).scan()
#### Assume Role
session = AwsSessionFactory.get_session_using_assume_role(external_id='...',
role_arn="...",
region='us-east-1')
aws_scan_output_directory = AwsScanner(session, aws_settings).scan()
### Azure ###
azure_settings = AzureCloudScanSettings(
commands_path='/Users/dev/python/dragoneye/azure_commands_example.yaml',
subscription_id='...',
account_name='my-account'
)
#### Using a registered application in Azure AD
token = AzureAuthorizer.get_authorization_token(
tenant_id='...',
client_id='...',
client_secret='...'
) # Raises exception if authentication is unsuccessful
azure_scan_output_directory = AzureScanner(token, azure_settings).scan()
### GCP ###
gcp_settings = GcpCloudScanSettings(commands_path='/Users/dev/python/dragoneye/gcp_commands_example.yaml',
account_name='gcp', project_id='project-id')
# Authenticating by GCP default auth mechanism:
# Checks environment in order of precedence:
# - Environment variable GOOGLE_APPLICATION_CREDENTIALS pointing to
# a file with stored credentials information.
# - Stored "well known" file associated with `gcloud` command line tool.
# - Google App Engine (production and testing)
# - Google Compute Engine production environment.
default_credentials = GcpCredentialsFactory.get_default_credentials()
# Using a file that contains the service account credentials
service_account_file_credentials = GcpCredentialsFactory.from_service_account_file('filepath.json')
# Using a dictionary that contains the service account credentials (the content of the file from above example)
service_account_dict_credentials = GcpCredentialsFactory.from_service_account_info({'...': '...'})
# Using impersonation method (service_account_A allowing service_account_B to generate short-lived credentials of service_account_A)
impersonation_credentials = GcpCredentialsFactory.impersonate(default_credentials, 'client_email@google.com', ['https://www.googleapis.com/auth/compute.readonly'])
# Authenticating from an AWS resource via a credentials config file defined by the 'Workload Identity Federation'
wif_credentials = GcpCredentialsFactory.from_aws_credentials_config_file('filepath.json')
# Same as above, but with the content of the above file
wif_credentials = GcpCredentialsFactory.from_aws_credentials_config_info({'...': '...'})
gcp_scan_output_directory = GcpScanner(default_credentials, gcp_settings)
```
## CLI usage
### For collecting data from AWS
Dragoneye will use the same mechanisms boto3 uses for authentication. It will generally look for
AWS_ACCESS_KEY_ID, etc. as environment variables.
```
dragoneye aws
```
### For collecting data from Azure
You can authenticate in one of two ways:
1. `az login`, which will allow dragoneye to use credentials loaded through Azure CLI.
2. With client id and secret of an application registered in your Azure AD.
```
dragoneye azure
```
### For collecting data from GP
You can authenticate in several ways:
1. `gcloud auth application-default login`, which will allow dragoneye to use credentials loaded through GCP CLI.
2. With service account credentials - either a file, or its content.
3. With impersonation mechanism; service_account_A allowing service_account_B to generate short-lived credentials of service_account_A
4. With Workload Identity Federation mechanism, authenticating from AWS.
```
dragoneye gcp
```
%package -n python3-dragoneye
Summary: Multi-cloud data scan tool
Provides: python-dragoneye
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dragoneye





# dragoneye
dragoneye is a Python tool that is used to collect data about a cloud environment using the cloud provider's APIs. It is intended to function as component in other tools who have the need to collect data quickly (multi-threaded), or as a command line to collect a snapshot of a cloud account.
dragoneye currently supports AWS (AssumeRole and AccessKey based collection) and Azure (with client secret).
# Setup
Clone this git repository, navigate to the root directory where `setup.py` is located and run:
```
pip install .
```
(note the period at the end of the command)
We recommend doing this within a virtual environment, like so:
```
python3.9 -m venv ./venv
. ./venv/bin/activate
pip install .
```
# Usage
## Programmatic Usage
Create an instance of one of the CollectRequest classes, such as AwsAccessKeyCollectRequest, AwsAssumeRoleCollectRequest, AzureCollectRequest and call the `collect` function. For example:
```python
from dragoneye import AwsScanner, AwsCloudScanSettings, AwsSessionFactory, AzureScanner, AzureCloudScanSettings, AzureAuthorizer, GcpCloudScanSettings, GcpCredentialsFactory, GcpScanner
### AWS ###
aws_settings = AwsCloudScanSettings(
commands_path='/Users/dev/python/dragoneye/aws_commands_example.yaml',
account_name='default', default_region='us-east-1', regions_filter=['us-east-1']
)
#### Using environment variables
session = AwsSessionFactory.get_session(profile_name=None, region='us-east-1') # Raises exception if authentication is unsuccessful
aws_scan_output_directory = AwsScanner(session, aws_settings).scan()
#### Using an AWS Profile
session = AwsSessionFactory.get_session(profile_name='MyProfile', region='us-east-1') # Raises exception if authentication is unsuccessful
aws_scan_output_directory = AwsScanner(session, aws_settings).scan()
#### Assume Role
session = AwsSessionFactory.get_session_using_assume_role(external_id='...',
role_arn="...",
region='us-east-1')
aws_scan_output_directory = AwsScanner(session, aws_settings).scan()
### Azure ###
azure_settings = AzureCloudScanSettings(
commands_path='/Users/dev/python/dragoneye/azure_commands_example.yaml',
subscription_id='...',
account_name='my-account'
)
#### Using a registered application in Azure AD
token = AzureAuthorizer.get_authorization_token(
tenant_id='...',
client_id='...',
client_secret='...'
) # Raises exception if authentication is unsuccessful
azure_scan_output_directory = AzureScanner(token, azure_settings).scan()
### GCP ###
gcp_settings = GcpCloudScanSettings(commands_path='/Users/dev/python/dragoneye/gcp_commands_example.yaml',
account_name='gcp', project_id='project-id')
# Authenticating by GCP default auth mechanism:
# Checks environment in order of precedence:
# - Environment variable GOOGLE_APPLICATION_CREDENTIALS pointing to
# a file with stored credentials information.
# - Stored "well known" file associated with `gcloud` command line tool.
# - Google App Engine (production and testing)
# - Google Compute Engine production environment.
default_credentials = GcpCredentialsFactory.get_default_credentials()
# Using a file that contains the service account credentials
service_account_file_credentials = GcpCredentialsFactory.from_service_account_file('filepath.json')
# Using a dictionary that contains the service account credentials (the content of the file from above example)
service_account_dict_credentials = GcpCredentialsFactory.from_service_account_info({'...': '...'})
# Using impersonation method (service_account_A allowing service_account_B to generate short-lived credentials of service_account_A)
impersonation_credentials = GcpCredentialsFactory.impersonate(default_credentials, 'client_email@google.com', ['https://www.googleapis.com/auth/compute.readonly'])
# Authenticating from an AWS resource via a credentials config file defined by the 'Workload Identity Federation'
wif_credentials = GcpCredentialsFactory.from_aws_credentials_config_file('filepath.json')
# Same as above, but with the content of the above file
wif_credentials = GcpCredentialsFactory.from_aws_credentials_config_info({'...': '...'})
gcp_scan_output_directory = GcpScanner(default_credentials, gcp_settings)
```
## CLI usage
### For collecting data from AWS
Dragoneye will use the same mechanisms boto3 uses for authentication. It will generally look for
AWS_ACCESS_KEY_ID, etc. as environment variables.
```
dragoneye aws
```
### For collecting data from Azure
You can authenticate in one of two ways:
1. `az login`, which will allow dragoneye to use credentials loaded through Azure CLI.
2. With client id and secret of an application registered in your Azure AD.
```
dragoneye azure
```
### For collecting data from GP
You can authenticate in several ways:
1. `gcloud auth application-default login`, which will allow dragoneye to use credentials loaded through GCP CLI.
2. With service account credentials - either a file, or its content.
3. With impersonation mechanism; service_account_A allowing service_account_B to generate short-lived credentials of service_account_A
4. With Workload Identity Federation mechanism, authenticating from AWS.
```
dragoneye gcp
```
%package help
Summary: Development documents and examples for dragoneye
Provides: python3-dragoneye-doc
%description help





# dragoneye
dragoneye is a Python tool that is used to collect data about a cloud environment using the cloud provider's APIs. It is intended to function as component in other tools who have the need to collect data quickly (multi-threaded), or as a command line to collect a snapshot of a cloud account.
dragoneye currently supports AWS (AssumeRole and AccessKey based collection) and Azure (with client secret).
# Setup
Clone this git repository, navigate to the root directory where `setup.py` is located and run:
```
pip install .
```
(note the period at the end of the command)
We recommend doing this within a virtual environment, like so:
```
python3.9 -m venv ./venv
. ./venv/bin/activate
pip install .
```
# Usage
## Programmatic Usage
Create an instance of one of the CollectRequest classes, such as AwsAccessKeyCollectRequest, AwsAssumeRoleCollectRequest, AzureCollectRequest and call the `collect` function. For example:
```python
from dragoneye import AwsScanner, AwsCloudScanSettings, AwsSessionFactory, AzureScanner, AzureCloudScanSettings, AzureAuthorizer, GcpCloudScanSettings, GcpCredentialsFactory, GcpScanner
### AWS ###
aws_settings = AwsCloudScanSettings(
commands_path='/Users/dev/python/dragoneye/aws_commands_example.yaml',
account_name='default', default_region='us-east-1', regions_filter=['us-east-1']
)
#### Using environment variables
session = AwsSessionFactory.get_session(profile_name=None, region='us-east-1') # Raises exception if authentication is unsuccessful
aws_scan_output_directory = AwsScanner(session, aws_settings).scan()
#### Using an AWS Profile
session = AwsSessionFactory.get_session(profile_name='MyProfile', region='us-east-1') # Raises exception if authentication is unsuccessful
aws_scan_output_directory = AwsScanner(session, aws_settings).scan()
#### Assume Role
session = AwsSessionFactory.get_session_using_assume_role(external_id='...',
role_arn="...",
region='us-east-1')
aws_scan_output_directory = AwsScanner(session, aws_settings).scan()
### Azure ###
azure_settings = AzureCloudScanSettings(
commands_path='/Users/dev/python/dragoneye/azure_commands_example.yaml',
subscription_id='...',
account_name='my-account'
)
#### Using a registered application in Azure AD
token = AzureAuthorizer.get_authorization_token(
tenant_id='...',
client_id='...',
client_secret='...'
) # Raises exception if authentication is unsuccessful
azure_scan_output_directory = AzureScanner(token, azure_settings).scan()
### GCP ###
gcp_settings = GcpCloudScanSettings(commands_path='/Users/dev/python/dragoneye/gcp_commands_example.yaml',
account_name='gcp', project_id='project-id')
# Authenticating by GCP default auth mechanism:
# Checks environment in order of precedence:
# - Environment variable GOOGLE_APPLICATION_CREDENTIALS pointing to
# a file with stored credentials information.
# - Stored "well known" file associated with `gcloud` command line tool.
# - Google App Engine (production and testing)
# - Google Compute Engine production environment.
default_credentials = GcpCredentialsFactory.get_default_credentials()
# Using a file that contains the service account credentials
service_account_file_credentials = GcpCredentialsFactory.from_service_account_file('filepath.json')
# Using a dictionary that contains the service account credentials (the content of the file from above example)
service_account_dict_credentials = GcpCredentialsFactory.from_service_account_info({'...': '...'})
# Using impersonation method (service_account_A allowing service_account_B to generate short-lived credentials of service_account_A)
impersonation_credentials = GcpCredentialsFactory.impersonate(default_credentials, 'client_email@google.com', ['https://www.googleapis.com/auth/compute.readonly'])
# Authenticating from an AWS resource via a credentials config file defined by the 'Workload Identity Federation'
wif_credentials = GcpCredentialsFactory.from_aws_credentials_config_file('filepath.json')
# Same as above, but with the content of the above file
wif_credentials = GcpCredentialsFactory.from_aws_credentials_config_info({'...': '...'})
gcp_scan_output_directory = GcpScanner(default_credentials, gcp_settings)
```
## CLI usage
### For collecting data from AWS
Dragoneye will use the same mechanisms boto3 uses for authentication. It will generally look for
AWS_ACCESS_KEY_ID, etc. as environment variables.
```
dragoneye aws
```
### For collecting data from Azure
You can authenticate in one of two ways:
1. `az login`, which will allow dragoneye to use credentials loaded through Azure CLI.
2. With client id and secret of an application registered in your Azure AD.
```
dragoneye azure
```
### For collecting data from GP
You can authenticate in several ways:
1. `gcloud auth application-default login`, which will allow dragoneye to use credentials loaded through GCP CLI.
2. With service account credentials - either a file, or its content.
3. With impersonation mechanism; service_account_A allowing service_account_B to generate short-lived credentials of service_account_A
4. With Workload Identity Federation mechanism, authenticating from AWS.
```
dragoneye gcp
```
%prep
%autosetup -n dragoneye-0.0.77
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dragoneye -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.77-1
- Package Spec generated
|