diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-04-11 00:12:58 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-04-11 00:12:58 +0000 |
| commit | fef48781cadd5bd1f6653d0b72dc30271550b750 (patch) | |
| tree | 0a97ddb3fce242244eafe3f5ba56798e989a7943 | |
| parent | 71daffa0d186d84e33baed9017af73d94e20cd26 (diff) | |
automatic import of python-dragonfly-opt
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-dragonfly-opt.spec | 513 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 515 insertions, 0 deletions
@@ -0,0 +1 @@ +/dragonfly-opt-0.1.7.tar.gz diff --git a/python-dragonfly-opt.spec b/python-dragonfly-opt.spec new file mode 100644 index 0000000..95cb68f --- /dev/null +++ b/python-dragonfly-opt.spec @@ -0,0 +1,513 @@ +%global _empty_manifest_terminate_build 0 +Name: python-dragonfly-opt +Version: 0.1.7 +Release: 1 +Summary: please add a summary manually as the author left a blank one +License: MIT +URL: https://github.com/dragonfly/dragonfly/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d8/d4/4dc27b149e1c39a06d5f91e6d5aff84c285d28e8d93fcc780b2a40ea39ec/dragonfly-opt-0.1.7.tar.gz +BuildArch: noarch + + +%description +Dragonfly is an open source python library for scalable Bayesian optimisation. +Bayesian optimisation is used for optimising black-box functions whose evaluations are +usually expensive. Beyond vanilla optimisation techniques, Dragonfly provides an array of tools to +scale up Bayesian optimisation to expensive large scale problems. +These include features/functionality that are especially suited for +high dimensional optimisation (optimising for a large number of variables), +parallel evaluations in synchronous or asynchronous settings (conducting multiple +evaluations in parallel), multi-fidelity optimisation (using cheap approximations +to speed up the optimisation process), and multi-objective optimisation (optimising +multiple functions simultaneously). +Dragonfly is compatible with Python2 (>= 2.7) and Python3 (>= 3.5) and has been tested +on Linux, macOS, and Windows platforms. +For documentation, installation, and a getting started guide, see our +[readthedocs page](https://dragonfly-opt.readthedocs.io). For more details, see +our [paper](https://arxiv.org/abs/1903.06694). + +## Installation +See +[here](https://dragonfly-opt.readthedocs.io/en/master/install/) +for detailed instructions on installing Dragonfly and its dependencies. +**Quick Installation:** +If you have done this kind of thing before, you should be able to install +Dragonfly via `pip`. +```bash +$ sudo apt-get install python-dev python3-dev gfortran # On Ubuntu/Debian +$ pip install numpy +$ pip install dragonfly-opt -v +``` +**Testing the Installation**: +You can import Dragonfly in python to test if it was installed properly. +If you have installed via source, make sure that you move to a different directory + to avoid naming conflicts. +```bash +$ python +>>> from dragonfly import minimise_function +>>> # The first argument below is the function, the second is the domain, and the third is the budget. +>>> min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 10); +>>> min_val, min_pt +(-0.32122746026750953, array([-0.7129672])) +``` +Due to stochasticity in the algorithms, the above values for `min_val`, `min_pt` may be +different. If you run it for longer (e.g. +`min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 100)`), +you should get more consistent values for the minimum. +If the installation fails or if there are warning messages, see detailed instructions +[here](https://dragonfly-opt.readthedocs.io/en/master/install/). + +## Quick Start +Dragonfly can be +used directly in the command line by calling +[`dragonfly-script.py`](bin/dragonfly-script.py) +or be imported in python code via the `maximise_function` function in the main library +or in <em>ask-tell</em> mode. +To help get started, we have provided some examples in the +[`examples`](examples) directory. +See our readthedocs getting started pages +([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/), +[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/), +[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/)) +for examples and use cases. +**Command line**: +Below is an example usage in the command line. +```bash +$ cd examples +$ dragonfly-script.py --config synthetic/branin/config.json --options options_files/options_example.txt +``` +**In Python code**: +The main APIs for Dragonfly are defined in +[`dragonfly/apis`](dragonfly/apis). +For their definitions and arguments, see +[`dragonfly/apis/opt.py`](dragonfly/apis/opt.py) and +[`dragonfly/apis/moo.py`](dragonfly/apis/moo.py). +You can import the main API in python code via, +```python +from dragonfly import minimise_function, maximise_function +func = lambda x: x ** 4 - x**2 + 0.1 * x +domain = [[-10, 10]] +max_capital = 100 +min_val, min_pt, history = minimise_function(func, domain, max_capital) +print(min_val, min_pt) +max_val, max_pt, history = maximise_function(lambda x: -func(x), domain, max_capital) +print(max_val, max_pt) +``` +Here, `func` is the function to be maximised, +`domain` is the domain over which `func` is to be optimised, +and `max_capital` is the capital available for optimisation. +The domain can be specified via a JSON file or in code. +See +[here](examples/synthetic/branin/in_code_demo.py), +[here](examples/synthetic/hartmann6_4/in_code_demo.py), +[here](examples/synthetic/discrete_euc/in_code_demo_1.py), +[here](examples/synthetic/discrete_euc/in_code_demo_2.py), +[here](examples/synthetic/hartmann3_constrained/in_code_demo.py), +[here](examples/synthetic/park1_constrained/in_code_demo.py), +[here](examples/synthetic/borehole_constrained/in_code_demo.py), +[here](examples/synthetic/multiobjective_branin_currinexp/in_code_demo.py), +[here](examples/synthetic/multiobjective_hartmann/in_code_demo.py), +[here](examples/tree_reg/in_code_demo.py), +and +[here](examples/nas/demo_nas.py) +for more detailed examples. +**In Ask-Tell Mode**: +Ask-tell mode provides you more control over your experiments where you can supply past results +to our API in order to obtain a recommendation. +See the [following example](examples/detailed_use_cases/in_code_demo_ask_tell.py) for more details. +For a comprehensive list of uses cases, including multi-objective optimisation, +multi-fidelity optimisation, neural architecture search, and other optimisation +methods (besides Bayesian optimisation), see our readthe docs pages +([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/), +[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/), +[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/))). + +### Contributors +Kirthevasan Kandasamy: [github](https://github.com/kirthevasank), +[webpage](http://www.cs.cmu.edu/~kkandasa/) +Karun Raju Vysyaraju: [github](https://github.com/karunraju), +[linkedin](https://www.linkedin.com/in/karunrajuvysyaraju) +Anthony Yu: [github](https://github.com/anthonyhsyu), +[linkedin](https://www.linkedin.com/in/anthony-yu-5239a877/) +Willie Neiswanger: [github](https://github.com/willieneis), +[webpage](http://www.cs.cmu.edu/~wdn/) +Biswajit Paria: [github](https://github.com/biswajitsc), +[webpage](https://biswajitsc.github.io/) +Chris Collins: [github](https://github.com/crcollins/), +[webpage](https://www.crcollins.com/) +### Acknowledgements +Research and development of the methods in this package were funded by +DOE grant DESC0011114, NSF grant IIS1563887, the DARPA D3M program, and AFRL. +### Citation +If you use any part of this code in your work, please cite our +[JMLR paper](http://jmlr.org/papers/v21/18-223.html). +``` +@article{JMLR:v21:18-223, + author = {Kirthevasan Kandasamy and Karun Raju Vysyaraju and Willie Neiswanger and Biswajit Paria and Christopher R. Collins and Jeff Schneider and Barnabas Poczos and Eric P. Xing}, + title = {Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly}, + journal = {Journal of Machine Learning Research}, + year = {2020}, + volume = {21}, + number = {81}, + pages = {1-27}, + url = {http://jmlr.org/papers/v21/18-223.html} +} +``` +### License +This software is released under the MIT license. For more details, please refer +[LICENSE.txt](https://github.com/dragonfly/dragonfly/blob/master/LICENSE.txt). +For questions, please email kandasamy@cs.cmu.edu. +"Copyright 2018-2019 Kirthevasan Kandasamy" + +%package -n python3-dragonfly-opt +Summary: please add a summary manually as the author left a blank one +Provides: python-dragonfly-opt +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-dragonfly-opt +Dragonfly is an open source python library for scalable Bayesian optimisation. +Bayesian optimisation is used for optimising black-box functions whose evaluations are +usually expensive. Beyond vanilla optimisation techniques, Dragonfly provides an array of tools to +scale up Bayesian optimisation to expensive large scale problems. +These include features/functionality that are especially suited for +high dimensional optimisation (optimising for a large number of variables), +parallel evaluations in synchronous or asynchronous settings (conducting multiple +evaluations in parallel), multi-fidelity optimisation (using cheap approximations +to speed up the optimisation process), and multi-objective optimisation (optimising +multiple functions simultaneously). +Dragonfly is compatible with Python2 (>= 2.7) and Python3 (>= 3.5) and has been tested +on Linux, macOS, and Windows platforms. +For documentation, installation, and a getting started guide, see our +[readthedocs page](https://dragonfly-opt.readthedocs.io). For more details, see +our [paper](https://arxiv.org/abs/1903.06694). + +## Installation +See +[here](https://dragonfly-opt.readthedocs.io/en/master/install/) +for detailed instructions on installing Dragonfly and its dependencies. +**Quick Installation:** +If you have done this kind of thing before, you should be able to install +Dragonfly via `pip`. +```bash +$ sudo apt-get install python-dev python3-dev gfortran # On Ubuntu/Debian +$ pip install numpy +$ pip install dragonfly-opt -v +``` +**Testing the Installation**: +You can import Dragonfly in python to test if it was installed properly. +If you have installed via source, make sure that you move to a different directory + to avoid naming conflicts. +```bash +$ python +>>> from dragonfly import minimise_function +>>> # The first argument below is the function, the second is the domain, and the third is the budget. +>>> min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 10); +>>> min_val, min_pt +(-0.32122746026750953, array([-0.7129672])) +``` +Due to stochasticity in the algorithms, the above values for `min_val`, `min_pt` may be +different. If you run it for longer (e.g. +`min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 100)`), +you should get more consistent values for the minimum. +If the installation fails or if there are warning messages, see detailed instructions +[here](https://dragonfly-opt.readthedocs.io/en/master/install/). + +## Quick Start +Dragonfly can be +used directly in the command line by calling +[`dragonfly-script.py`](bin/dragonfly-script.py) +or be imported in python code via the `maximise_function` function in the main library +or in <em>ask-tell</em> mode. +To help get started, we have provided some examples in the +[`examples`](examples) directory. +See our readthedocs getting started pages +([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/), +[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/), +[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/)) +for examples and use cases. +**Command line**: +Below is an example usage in the command line. +```bash +$ cd examples +$ dragonfly-script.py --config synthetic/branin/config.json --options options_files/options_example.txt +``` +**In Python code**: +The main APIs for Dragonfly are defined in +[`dragonfly/apis`](dragonfly/apis). +For their definitions and arguments, see +[`dragonfly/apis/opt.py`](dragonfly/apis/opt.py) and +[`dragonfly/apis/moo.py`](dragonfly/apis/moo.py). +You can import the main API in python code via, +```python +from dragonfly import minimise_function, maximise_function +func = lambda x: x ** 4 - x**2 + 0.1 * x +domain = [[-10, 10]] +max_capital = 100 +min_val, min_pt, history = minimise_function(func, domain, max_capital) +print(min_val, min_pt) +max_val, max_pt, history = maximise_function(lambda x: -func(x), domain, max_capital) +print(max_val, max_pt) +``` +Here, `func` is the function to be maximised, +`domain` is the domain over which `func` is to be optimised, +and `max_capital` is the capital available for optimisation. +The domain can be specified via a JSON file or in code. +See +[here](examples/synthetic/branin/in_code_demo.py), +[here](examples/synthetic/hartmann6_4/in_code_demo.py), +[here](examples/synthetic/discrete_euc/in_code_demo_1.py), +[here](examples/synthetic/discrete_euc/in_code_demo_2.py), +[here](examples/synthetic/hartmann3_constrained/in_code_demo.py), +[here](examples/synthetic/park1_constrained/in_code_demo.py), +[here](examples/synthetic/borehole_constrained/in_code_demo.py), +[here](examples/synthetic/multiobjective_branin_currinexp/in_code_demo.py), +[here](examples/synthetic/multiobjective_hartmann/in_code_demo.py), +[here](examples/tree_reg/in_code_demo.py), +and +[here](examples/nas/demo_nas.py) +for more detailed examples. +**In Ask-Tell Mode**: +Ask-tell mode provides you more control over your experiments where you can supply past results +to our API in order to obtain a recommendation. +See the [following example](examples/detailed_use_cases/in_code_demo_ask_tell.py) for more details. +For a comprehensive list of uses cases, including multi-objective optimisation, +multi-fidelity optimisation, neural architecture search, and other optimisation +methods (besides Bayesian optimisation), see our readthe docs pages +([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/), +[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/), +[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/))). + +### Contributors +Kirthevasan Kandasamy: [github](https://github.com/kirthevasank), +[webpage](http://www.cs.cmu.edu/~kkandasa/) +Karun Raju Vysyaraju: [github](https://github.com/karunraju), +[linkedin](https://www.linkedin.com/in/karunrajuvysyaraju) +Anthony Yu: [github](https://github.com/anthonyhsyu), +[linkedin](https://www.linkedin.com/in/anthony-yu-5239a877/) +Willie Neiswanger: [github](https://github.com/willieneis), +[webpage](http://www.cs.cmu.edu/~wdn/) +Biswajit Paria: [github](https://github.com/biswajitsc), +[webpage](https://biswajitsc.github.io/) +Chris Collins: [github](https://github.com/crcollins/), +[webpage](https://www.crcollins.com/) +### Acknowledgements +Research and development of the methods in this package were funded by +DOE grant DESC0011114, NSF grant IIS1563887, the DARPA D3M program, and AFRL. +### Citation +If you use any part of this code in your work, please cite our +[JMLR paper](http://jmlr.org/papers/v21/18-223.html). +``` +@article{JMLR:v21:18-223, + author = {Kirthevasan Kandasamy and Karun Raju Vysyaraju and Willie Neiswanger and Biswajit Paria and Christopher R. Collins and Jeff Schneider and Barnabas Poczos and Eric P. Xing}, + title = {Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly}, + journal = {Journal of Machine Learning Research}, + year = {2020}, + volume = {21}, + number = {81}, + pages = {1-27}, + url = {http://jmlr.org/papers/v21/18-223.html} +} +``` +### License +This software is released under the MIT license. For more details, please refer +[LICENSE.txt](https://github.com/dragonfly/dragonfly/blob/master/LICENSE.txt). +For questions, please email kandasamy@cs.cmu.edu. +"Copyright 2018-2019 Kirthevasan Kandasamy" + +%package help +Summary: Development documents and examples for dragonfly-opt +Provides: python3-dragonfly-opt-doc +%description help +Dragonfly is an open source python library for scalable Bayesian optimisation. +Bayesian optimisation is used for optimising black-box functions whose evaluations are +usually expensive. Beyond vanilla optimisation techniques, Dragonfly provides an array of tools to +scale up Bayesian optimisation to expensive large scale problems. +These include features/functionality that are especially suited for +high dimensional optimisation (optimising for a large number of variables), +parallel evaluations in synchronous or asynchronous settings (conducting multiple +evaluations in parallel), multi-fidelity optimisation (using cheap approximations +to speed up the optimisation process), and multi-objective optimisation (optimising +multiple functions simultaneously). +Dragonfly is compatible with Python2 (>= 2.7) and Python3 (>= 3.5) and has been tested +on Linux, macOS, and Windows platforms. +For documentation, installation, and a getting started guide, see our +[readthedocs page](https://dragonfly-opt.readthedocs.io). For more details, see +our [paper](https://arxiv.org/abs/1903.06694). + +## Installation +See +[here](https://dragonfly-opt.readthedocs.io/en/master/install/) +for detailed instructions on installing Dragonfly and its dependencies. +**Quick Installation:** +If you have done this kind of thing before, you should be able to install +Dragonfly via `pip`. +```bash +$ sudo apt-get install python-dev python3-dev gfortran # On Ubuntu/Debian +$ pip install numpy +$ pip install dragonfly-opt -v +``` +**Testing the Installation**: +You can import Dragonfly in python to test if it was installed properly. +If you have installed via source, make sure that you move to a different directory + to avoid naming conflicts. +```bash +$ python +>>> from dragonfly import minimise_function +>>> # The first argument below is the function, the second is the domain, and the third is the budget. +>>> min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 10); +>>> min_val, min_pt +(-0.32122746026750953, array([-0.7129672])) +``` +Due to stochasticity in the algorithms, the above values for `min_val`, `min_pt` may be +different. If you run it for longer (e.g. +`min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 100)`), +you should get more consistent values for the minimum. +If the installation fails or if there are warning messages, see detailed instructions +[here](https://dragonfly-opt.readthedocs.io/en/master/install/). + +## Quick Start +Dragonfly can be +used directly in the command line by calling +[`dragonfly-script.py`](bin/dragonfly-script.py) +or be imported in python code via the `maximise_function` function in the main library +or in <em>ask-tell</em> mode. +To help get started, we have provided some examples in the +[`examples`](examples) directory. +See our readthedocs getting started pages +([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/), +[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/), +[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/)) +for examples and use cases. +**Command line**: +Below is an example usage in the command line. +```bash +$ cd examples +$ dragonfly-script.py --config synthetic/branin/config.json --options options_files/options_example.txt +``` +**In Python code**: +The main APIs for Dragonfly are defined in +[`dragonfly/apis`](dragonfly/apis). +For their definitions and arguments, see +[`dragonfly/apis/opt.py`](dragonfly/apis/opt.py) and +[`dragonfly/apis/moo.py`](dragonfly/apis/moo.py). +You can import the main API in python code via, +```python +from dragonfly import minimise_function, maximise_function +func = lambda x: x ** 4 - x**2 + 0.1 * x +domain = [[-10, 10]] +max_capital = 100 +min_val, min_pt, history = minimise_function(func, domain, max_capital) +print(min_val, min_pt) +max_val, max_pt, history = maximise_function(lambda x: -func(x), domain, max_capital) +print(max_val, max_pt) +``` +Here, `func` is the function to be maximised, +`domain` is the domain over which `func` is to be optimised, +and `max_capital` is the capital available for optimisation. +The domain can be specified via a JSON file or in code. +See +[here](examples/synthetic/branin/in_code_demo.py), +[here](examples/synthetic/hartmann6_4/in_code_demo.py), +[here](examples/synthetic/discrete_euc/in_code_demo_1.py), +[here](examples/synthetic/discrete_euc/in_code_demo_2.py), +[here](examples/synthetic/hartmann3_constrained/in_code_demo.py), +[here](examples/synthetic/park1_constrained/in_code_demo.py), +[here](examples/synthetic/borehole_constrained/in_code_demo.py), +[here](examples/synthetic/multiobjective_branin_currinexp/in_code_demo.py), +[here](examples/synthetic/multiobjective_hartmann/in_code_demo.py), +[here](examples/tree_reg/in_code_demo.py), +and +[here](examples/nas/demo_nas.py) +for more detailed examples. +**In Ask-Tell Mode**: +Ask-tell mode provides you more control over your experiments where you can supply past results +to our API in order to obtain a recommendation. +See the [following example](examples/detailed_use_cases/in_code_demo_ask_tell.py) for more details. +For a comprehensive list of uses cases, including multi-objective optimisation, +multi-fidelity optimisation, neural architecture search, and other optimisation +methods (besides Bayesian optimisation), see our readthe docs pages +([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/), +[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/), +[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/))). + +### Contributors +Kirthevasan Kandasamy: [github](https://github.com/kirthevasank), +[webpage](http://www.cs.cmu.edu/~kkandasa/) +Karun Raju Vysyaraju: [github](https://github.com/karunraju), +[linkedin](https://www.linkedin.com/in/karunrajuvysyaraju) +Anthony Yu: [github](https://github.com/anthonyhsyu), +[linkedin](https://www.linkedin.com/in/anthony-yu-5239a877/) +Willie Neiswanger: [github](https://github.com/willieneis), +[webpage](http://www.cs.cmu.edu/~wdn/) +Biswajit Paria: [github](https://github.com/biswajitsc), +[webpage](https://biswajitsc.github.io/) +Chris Collins: [github](https://github.com/crcollins/), +[webpage](https://www.crcollins.com/) +### Acknowledgements +Research and development of the methods in this package were funded by +DOE grant DESC0011114, NSF grant IIS1563887, the DARPA D3M program, and AFRL. +### Citation +If you use any part of this code in your work, please cite our +[JMLR paper](http://jmlr.org/papers/v21/18-223.html). +``` +@article{JMLR:v21:18-223, + author = {Kirthevasan Kandasamy and Karun Raju Vysyaraju and Willie Neiswanger and Biswajit Paria and Christopher R. Collins and Jeff Schneider and Barnabas Poczos and Eric P. Xing}, + title = {Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly}, + journal = {Journal of Machine Learning Research}, + year = {2020}, + volume = {21}, + number = {81}, + pages = {1-27}, + url = {http://jmlr.org/papers/v21/18-223.html} +} +``` +### License +This software is released under the MIT license. For more details, please refer +[LICENSE.txt](https://github.com/dragonfly/dragonfly/blob/master/LICENSE.txt). +For questions, please email kandasamy@cs.cmu.edu. +"Copyright 2018-2019 Kirthevasan Kandasamy" + +%prep +%autosetup -n dragonfly-opt-0.1.7 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-dragonfly-opt -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.7-1 +- Package Spec generated @@ -0,0 +1 @@ +dea90014fa2d2ab33aea13f70a8410fe dragonfly-opt-0.1.7.tar.gz |
