summaryrefslogtreecommitdiff
path: root/python-dragonfly-opt.spec
blob: 95cb68ffcd6902ee69c21fc137cf5a7b81feaede (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
%global _empty_manifest_terminate_build 0
Name:		python-dragonfly-opt
Version:	0.1.7
Release:	1
Summary:	please add a summary manually as the author left a blank one
License:	MIT
URL:		https://github.com/dragonfly/dragonfly/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/d8/d4/4dc27b149e1c39a06d5f91e6d5aff84c285d28e8d93fcc780b2a40ea39ec/dragonfly-opt-0.1.7.tar.gz
BuildArch:	noarch


%description
Dragonfly is an open source python library for scalable Bayesian optimisation.
Bayesian optimisation is used for optimising black-box functions whose evaluations are
usually expensive. Beyond vanilla optimisation techniques, Dragonfly provides an array of tools to
scale up Bayesian optimisation to expensive large scale problems.
These include features/functionality that are especially suited for
high dimensional optimisation (optimising for a large number of variables),
parallel evaluations in synchronous or asynchronous settings (conducting multiple
evaluations in parallel), multi-fidelity optimisation (using cheap approximations
to speed up the optimisation process), and multi-objective optimisation (optimising
multiple functions simultaneously).
Dragonfly is compatible with Python2 (>= 2.7) and Python3 (>= 3.5) and has been tested
on Linux, macOS, and Windows platforms.
For documentation, installation, and a getting started guide, see our
[readthedocs page](https://dragonfly-opt.readthedocs.io). For more details, see
our [paper](https://arxiv.org/abs/1903.06694).
 
## Installation
See 
[here](https://dragonfly-opt.readthedocs.io/en/master/install/)
for detailed instructions on installing Dragonfly and its dependencies.
**Quick Installation:**
If you have done this kind of thing before, you should be able to install
Dragonfly via `pip`.
```bash
$ sudo apt-get install python-dev python3-dev gfortran # On Ubuntu/Debian
$ pip install numpy
$ pip install dragonfly-opt -v
```
**Testing the Installation**:
You can import Dragonfly in python to test if it was installed properly.
If you have installed via source, make sure that you move to a different directory 
 to avoid naming conflicts.
```bash
$ python
>>> from dragonfly import minimise_function
>>> # The first argument below is the function, the second is the domain, and the third is the budget.
>>> min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 10);  
>>> min_val, min_pt
(-0.32122746026750953, array([-0.7129672]))
```
Due to stochasticity in the algorithms, the above values for `min_val`, `min_pt` may be
different. If you run it for longer (e.g.
`min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 100)`),
you should get more consistent values for the minimum. 
If the installation fails or if there are warning messages, see detailed instructions
[here](https://dragonfly-opt.readthedocs.io/en/master/install/).
 
## Quick Start
Dragonfly can be
used directly in the command line by calling
[`dragonfly-script.py`](bin/dragonfly-script.py)
or be imported in python code via the `maximise_function` function in the main library
or in <em>ask-tell</em> mode.
To help get started, we have provided some examples in the
[`examples`](examples) directory.
See our readthedocs getting started pages
([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/),
[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/),
[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/))
for examples and use cases.
**Command line**:
Below is an example usage in the command line.
```bash
$ cd examples
$ dragonfly-script.py --config synthetic/branin/config.json --options options_files/options_example.txt
```
**In Python code**:
The main APIs for Dragonfly are defined in
[`dragonfly/apis`](dragonfly/apis).
For their definitions and arguments, see
[`dragonfly/apis/opt.py`](dragonfly/apis/opt.py) and
[`dragonfly/apis/moo.py`](dragonfly/apis/moo.py).
You can import the main API in python code via,
```python
from dragonfly import minimise_function, maximise_function
func = lambda x: x ** 4 - x**2 + 0.1 * x
domain = [[-10, 10]]
max_capital = 100
min_val, min_pt, history = minimise_function(func, domain, max_capital)
print(min_val, min_pt)
max_val, max_pt, history = maximise_function(lambda x: -func(x), domain, max_capital)
print(max_val, max_pt)
```
Here, `func` is the function to be maximised,
`domain` is the domain over which `func` is to be optimised,
and `max_capital` is the capital available for optimisation.
The domain can be specified via a JSON file or in code.
See
[here](examples/synthetic/branin/in_code_demo.py),
[here](examples/synthetic/hartmann6_4/in_code_demo.py),
[here](examples/synthetic/discrete_euc/in_code_demo_1.py),
[here](examples/synthetic/discrete_euc/in_code_demo_2.py),
[here](examples/synthetic/hartmann3_constrained/in_code_demo.py),
[here](examples/synthetic/park1_constrained/in_code_demo.py),
[here](examples/synthetic/borehole_constrained/in_code_demo.py),
[here](examples/synthetic/multiobjective_branin_currinexp/in_code_demo.py),
[here](examples/synthetic/multiobjective_hartmann/in_code_demo.py),
[here](examples/tree_reg/in_code_demo.py),
and
[here](examples/nas/demo_nas.py)
for more detailed examples.
**In Ask-Tell Mode**:
Ask-tell mode provides you more control over your experiments where you can supply past results
to our API in order to obtain a recommendation.
See the [following example](examples/detailed_use_cases/in_code_demo_ask_tell.py) for more details.
For a comprehensive list of uses cases, including multi-objective optimisation,
multi-fidelity optimisation, neural architecture search, and other optimisation
methods (besides Bayesian optimisation), see our readthe docs pages
([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/),
[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/),
[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/))).
&nbsp;
### Contributors
Kirthevasan Kandasamy: [github](https://github.com/kirthevasank),
[webpage](http://www.cs.cmu.edu/~kkandasa/)  
Karun Raju Vysyaraju: [github](https://github.com/karunraju),
[linkedin](https://www.linkedin.com/in/karunrajuvysyaraju)  
Anthony Yu: [github](https://github.com/anthonyhsyu),
[linkedin](https://www.linkedin.com/in/anthony-yu-5239a877/)  
Willie Neiswanger: [github](https://github.com/willieneis),
[webpage](http://www.cs.cmu.edu/~wdn/)  
Biswajit Paria: [github](https://github.com/biswajitsc),
[webpage](https://biswajitsc.github.io/)  
Chris Collins: [github](https://github.com/crcollins/),
[webpage](https://www.crcollins.com/)  
### Acknowledgements
Research and development of the methods in this package were funded by
DOE grant DESC0011114, NSF grant IIS1563887, the DARPA D3M program, and AFRL.
### Citation
If you use any part of this code in your work, please cite our
[JMLR paper](http://jmlr.org/papers/v21/18-223.html).
```
@article{JMLR:v21:18-223,
  author  = {Kirthevasan Kandasamy and Karun Raju Vysyaraju and Willie Neiswanger and Biswajit Paria and Christopher R. Collins and Jeff Schneider and Barnabas Poczos and Eric P. Xing},
  title   = {Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {81},
  pages   = {1-27},
  url     = {http://jmlr.org/papers/v21/18-223.html}
}
```
### License
This software is released under the MIT license. For more details, please refer
[LICENSE.txt](https://github.com/dragonfly/dragonfly/blob/master/LICENSE.txt).
For questions, please email kandasamy@cs.cmu.edu.
"Copyright 2018-2019 Kirthevasan Kandasamy"

%package -n python3-dragonfly-opt
Summary:	please add a summary manually as the author left a blank one
Provides:	python-dragonfly-opt
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-dragonfly-opt
Dragonfly is an open source python library for scalable Bayesian optimisation.
Bayesian optimisation is used for optimising black-box functions whose evaluations are
usually expensive. Beyond vanilla optimisation techniques, Dragonfly provides an array of tools to
scale up Bayesian optimisation to expensive large scale problems.
These include features/functionality that are especially suited for
high dimensional optimisation (optimising for a large number of variables),
parallel evaluations in synchronous or asynchronous settings (conducting multiple
evaluations in parallel), multi-fidelity optimisation (using cheap approximations
to speed up the optimisation process), and multi-objective optimisation (optimising
multiple functions simultaneously).
Dragonfly is compatible with Python2 (>= 2.7) and Python3 (>= 3.5) and has been tested
on Linux, macOS, and Windows platforms.
For documentation, installation, and a getting started guide, see our
[readthedocs page](https://dragonfly-opt.readthedocs.io). For more details, see
our [paper](https://arxiv.org/abs/1903.06694).
&nbsp;
## Installation
See 
[here](https://dragonfly-opt.readthedocs.io/en/master/install/)
for detailed instructions on installing Dragonfly and its dependencies.
**Quick Installation:**
If you have done this kind of thing before, you should be able to install
Dragonfly via `pip`.
```bash
$ sudo apt-get install python-dev python3-dev gfortran # On Ubuntu/Debian
$ pip install numpy
$ pip install dragonfly-opt -v
```
**Testing the Installation**:
You can import Dragonfly in python to test if it was installed properly.
If you have installed via source, make sure that you move to a different directory 
 to avoid naming conflicts.
```bash
$ python
>>> from dragonfly import minimise_function
>>> # The first argument below is the function, the second is the domain, and the third is the budget.
>>> min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 10);  
>>> min_val, min_pt
(-0.32122746026750953, array([-0.7129672]))
```
Due to stochasticity in the algorithms, the above values for `min_val`, `min_pt` may be
different. If you run it for longer (e.g.
`min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 100)`),
you should get more consistent values for the minimum. 
If the installation fails or if there are warning messages, see detailed instructions
[here](https://dragonfly-opt.readthedocs.io/en/master/install/).
&nbsp;
## Quick Start
Dragonfly can be
used directly in the command line by calling
[`dragonfly-script.py`](bin/dragonfly-script.py)
or be imported in python code via the `maximise_function` function in the main library
or in <em>ask-tell</em> mode.
To help get started, we have provided some examples in the
[`examples`](examples) directory.
See our readthedocs getting started pages
([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/),
[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/),
[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/))
for examples and use cases.
**Command line**:
Below is an example usage in the command line.
```bash
$ cd examples
$ dragonfly-script.py --config synthetic/branin/config.json --options options_files/options_example.txt
```
**In Python code**:
The main APIs for Dragonfly are defined in
[`dragonfly/apis`](dragonfly/apis).
For their definitions and arguments, see
[`dragonfly/apis/opt.py`](dragonfly/apis/opt.py) and
[`dragonfly/apis/moo.py`](dragonfly/apis/moo.py).
You can import the main API in python code via,
```python
from dragonfly import minimise_function, maximise_function
func = lambda x: x ** 4 - x**2 + 0.1 * x
domain = [[-10, 10]]
max_capital = 100
min_val, min_pt, history = minimise_function(func, domain, max_capital)
print(min_val, min_pt)
max_val, max_pt, history = maximise_function(lambda x: -func(x), domain, max_capital)
print(max_val, max_pt)
```
Here, `func` is the function to be maximised,
`domain` is the domain over which `func` is to be optimised,
and `max_capital` is the capital available for optimisation.
The domain can be specified via a JSON file or in code.
See
[here](examples/synthetic/branin/in_code_demo.py),
[here](examples/synthetic/hartmann6_4/in_code_demo.py),
[here](examples/synthetic/discrete_euc/in_code_demo_1.py),
[here](examples/synthetic/discrete_euc/in_code_demo_2.py),
[here](examples/synthetic/hartmann3_constrained/in_code_demo.py),
[here](examples/synthetic/park1_constrained/in_code_demo.py),
[here](examples/synthetic/borehole_constrained/in_code_demo.py),
[here](examples/synthetic/multiobjective_branin_currinexp/in_code_demo.py),
[here](examples/synthetic/multiobjective_hartmann/in_code_demo.py),
[here](examples/tree_reg/in_code_demo.py),
and
[here](examples/nas/demo_nas.py)
for more detailed examples.
**In Ask-Tell Mode**:
Ask-tell mode provides you more control over your experiments where you can supply past results
to our API in order to obtain a recommendation.
See the [following example](examples/detailed_use_cases/in_code_demo_ask_tell.py) for more details.
For a comprehensive list of uses cases, including multi-objective optimisation,
multi-fidelity optimisation, neural architecture search, and other optimisation
methods (besides Bayesian optimisation), see our readthe docs pages
([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/),
[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/),
[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/))).
&nbsp;
### Contributors
Kirthevasan Kandasamy: [github](https://github.com/kirthevasank),
[webpage](http://www.cs.cmu.edu/~kkandasa/)  
Karun Raju Vysyaraju: [github](https://github.com/karunraju),
[linkedin](https://www.linkedin.com/in/karunrajuvysyaraju)  
Anthony Yu: [github](https://github.com/anthonyhsyu),
[linkedin](https://www.linkedin.com/in/anthony-yu-5239a877/)  
Willie Neiswanger: [github](https://github.com/willieneis),
[webpage](http://www.cs.cmu.edu/~wdn/)  
Biswajit Paria: [github](https://github.com/biswajitsc),
[webpage](https://biswajitsc.github.io/)  
Chris Collins: [github](https://github.com/crcollins/),
[webpage](https://www.crcollins.com/)  
### Acknowledgements
Research and development of the methods in this package were funded by
DOE grant DESC0011114, NSF grant IIS1563887, the DARPA D3M program, and AFRL.
### Citation
If you use any part of this code in your work, please cite our
[JMLR paper](http://jmlr.org/papers/v21/18-223.html).
```
@article{JMLR:v21:18-223,
  author  = {Kirthevasan Kandasamy and Karun Raju Vysyaraju and Willie Neiswanger and Biswajit Paria and Christopher R. Collins and Jeff Schneider and Barnabas Poczos and Eric P. Xing},
  title   = {Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {81},
  pages   = {1-27},
  url     = {http://jmlr.org/papers/v21/18-223.html}
}
```
### License
This software is released under the MIT license. For more details, please refer
[LICENSE.txt](https://github.com/dragonfly/dragonfly/blob/master/LICENSE.txt).
For questions, please email kandasamy@cs.cmu.edu.
"Copyright 2018-2019 Kirthevasan Kandasamy"

%package help
Summary:	Development documents and examples for dragonfly-opt
Provides:	python3-dragonfly-opt-doc
%description help
Dragonfly is an open source python library for scalable Bayesian optimisation.
Bayesian optimisation is used for optimising black-box functions whose evaluations are
usually expensive. Beyond vanilla optimisation techniques, Dragonfly provides an array of tools to
scale up Bayesian optimisation to expensive large scale problems.
These include features/functionality that are especially suited for
high dimensional optimisation (optimising for a large number of variables),
parallel evaluations in synchronous or asynchronous settings (conducting multiple
evaluations in parallel), multi-fidelity optimisation (using cheap approximations
to speed up the optimisation process), and multi-objective optimisation (optimising
multiple functions simultaneously).
Dragonfly is compatible with Python2 (>= 2.7) and Python3 (>= 3.5) and has been tested
on Linux, macOS, and Windows platforms.
For documentation, installation, and a getting started guide, see our
[readthedocs page](https://dragonfly-opt.readthedocs.io). For more details, see
our [paper](https://arxiv.org/abs/1903.06694).
&nbsp;
## Installation
See 
[here](https://dragonfly-opt.readthedocs.io/en/master/install/)
for detailed instructions on installing Dragonfly and its dependencies.
**Quick Installation:**
If you have done this kind of thing before, you should be able to install
Dragonfly via `pip`.
```bash
$ sudo apt-get install python-dev python3-dev gfortran # On Ubuntu/Debian
$ pip install numpy
$ pip install dragonfly-opt -v
```
**Testing the Installation**:
You can import Dragonfly in python to test if it was installed properly.
If you have installed via source, make sure that you move to a different directory 
 to avoid naming conflicts.
```bash
$ python
>>> from dragonfly import minimise_function
>>> # The first argument below is the function, the second is the domain, and the third is the budget.
>>> min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 10);  
>>> min_val, min_pt
(-0.32122746026750953, array([-0.7129672]))
```
Due to stochasticity in the algorithms, the above values for `min_val`, `min_pt` may be
different. If you run it for longer (e.g.
`min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 100)`),
you should get more consistent values for the minimum. 
If the installation fails or if there are warning messages, see detailed instructions
[here](https://dragonfly-opt.readthedocs.io/en/master/install/).
&nbsp;
## Quick Start
Dragonfly can be
used directly in the command line by calling
[`dragonfly-script.py`](bin/dragonfly-script.py)
or be imported in python code via the `maximise_function` function in the main library
or in <em>ask-tell</em> mode.
To help get started, we have provided some examples in the
[`examples`](examples) directory.
See our readthedocs getting started pages
([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/),
[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/),
[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/))
for examples and use cases.
**Command line**:
Below is an example usage in the command line.
```bash
$ cd examples
$ dragonfly-script.py --config synthetic/branin/config.json --options options_files/options_example.txt
```
**In Python code**:
The main APIs for Dragonfly are defined in
[`dragonfly/apis`](dragonfly/apis).
For their definitions and arguments, see
[`dragonfly/apis/opt.py`](dragonfly/apis/opt.py) and
[`dragonfly/apis/moo.py`](dragonfly/apis/moo.py).
You can import the main API in python code via,
```python
from dragonfly import minimise_function, maximise_function
func = lambda x: x ** 4 - x**2 + 0.1 * x
domain = [[-10, 10]]
max_capital = 100
min_val, min_pt, history = minimise_function(func, domain, max_capital)
print(min_val, min_pt)
max_val, max_pt, history = maximise_function(lambda x: -func(x), domain, max_capital)
print(max_val, max_pt)
```
Here, `func` is the function to be maximised,
`domain` is the domain over which `func` is to be optimised,
and `max_capital` is the capital available for optimisation.
The domain can be specified via a JSON file or in code.
See
[here](examples/synthetic/branin/in_code_demo.py),
[here](examples/synthetic/hartmann6_4/in_code_demo.py),
[here](examples/synthetic/discrete_euc/in_code_demo_1.py),
[here](examples/synthetic/discrete_euc/in_code_demo_2.py),
[here](examples/synthetic/hartmann3_constrained/in_code_demo.py),
[here](examples/synthetic/park1_constrained/in_code_demo.py),
[here](examples/synthetic/borehole_constrained/in_code_demo.py),
[here](examples/synthetic/multiobjective_branin_currinexp/in_code_demo.py),
[here](examples/synthetic/multiobjective_hartmann/in_code_demo.py),
[here](examples/tree_reg/in_code_demo.py),
and
[here](examples/nas/demo_nas.py)
for more detailed examples.
**In Ask-Tell Mode**:
Ask-tell mode provides you more control over your experiments where you can supply past results
to our API in order to obtain a recommendation.
See the [following example](examples/detailed_use_cases/in_code_demo_ask_tell.py) for more details.
For a comprehensive list of uses cases, including multi-objective optimisation,
multi-fidelity optimisation, neural architecture search, and other optimisation
methods (besides Bayesian optimisation), see our readthe docs pages
([command line](https://dragonfly-opt.readthedocs.io/en/master/getting_started_cli/),
[Python](https://dragonfly-opt.readthedocs.io/en/master/getting_started_py/),
[Ask-Tell](https://dragonfly-opt.readthedocs.io/en/master/getting_started_ask_tell/))).
&nbsp;
### Contributors
Kirthevasan Kandasamy: [github](https://github.com/kirthevasank),
[webpage](http://www.cs.cmu.edu/~kkandasa/)  
Karun Raju Vysyaraju: [github](https://github.com/karunraju),
[linkedin](https://www.linkedin.com/in/karunrajuvysyaraju)  
Anthony Yu: [github](https://github.com/anthonyhsyu),
[linkedin](https://www.linkedin.com/in/anthony-yu-5239a877/)  
Willie Neiswanger: [github](https://github.com/willieneis),
[webpage](http://www.cs.cmu.edu/~wdn/)  
Biswajit Paria: [github](https://github.com/biswajitsc),
[webpage](https://biswajitsc.github.io/)  
Chris Collins: [github](https://github.com/crcollins/),
[webpage](https://www.crcollins.com/)  
### Acknowledgements
Research and development of the methods in this package were funded by
DOE grant DESC0011114, NSF grant IIS1563887, the DARPA D3M program, and AFRL.
### Citation
If you use any part of this code in your work, please cite our
[JMLR paper](http://jmlr.org/papers/v21/18-223.html).
```
@article{JMLR:v21:18-223,
  author  = {Kirthevasan Kandasamy and Karun Raju Vysyaraju and Willie Neiswanger and Biswajit Paria and Christopher R. Collins and Jeff Schneider and Barnabas Poczos and Eric P. Xing},
  title   = {Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {81},
  pages   = {1-27},
  url     = {http://jmlr.org/papers/v21/18-223.html}
}
```
### License
This software is released under the MIT license. For more details, please refer
[LICENSE.txt](https://github.com/dragonfly/dragonfly/blob/master/LICENSE.txt).
For questions, please email kandasamy@cs.cmu.edu.
"Copyright 2018-2019 Kirthevasan Kandasamy"

%prep
%autosetup -n dragonfly-opt-0.1.7

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-dragonfly-opt -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.7-1
- Package Spec generated