1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
|
%global _empty_manifest_terminate_build 0
Name: python-drain3
Version: 0.9.11
Release: 1
Summary: Persistent & streaming log template miner
License: MIT
URL: https://github.com/IBM/Drain3
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/dc/83/4da2d3a11b5e0edf1a4f4c0c2dd42126d2eb1f31c733967edd3dfac1af94/drain3-0.9.11.tar.gz
BuildArch: noarch
%description
# Drain3
## Introduction
Drain3 is an online log template miner that can extract templates (clusters) from a stream of log messages in a timely
manner. It employs a parse tree with fixed depth to guide the log group search process, which effectively avoids
constructing a very deep and unbalanced tree.
Drain3 continuously learns on-the-fly and extracts log templates from raw log entries.
#### Example:
For the input:
```
connected to 10.0.0.1
connected to 192.168.0.1
Hex number 0xDEADBEAF
user davidoh logged in
user eranr logged in
```
Drain3 extracts the following templates:
```
ID=1 : size=2 : connected to <:IP:>
ID=2 : size=1 : Hex number <:HEX:>
ID=3 : size=2 : user <:*:> logged in
```
Full sample program output:
```
Starting Drain3 template miner
Checking for saved state
Saved state not found
Drain3 started with 'FILE' persistence
Starting training mode. Reading from std-in ('q' to finish)
> connected to 10.0.0.1
Saving state of 1 clusters with 1 messages, 528 bytes, reason: cluster_created (1)
{"change_type": "cluster_created", "cluster_id": 1, "cluster_size": 1, "template_mined": "connected to <:IP:>", "cluster_count": 1}
Parameters: [ExtractedParameter(value='10.0.0.1', mask_name='IP')]
> connected to 192.168.0.1
{"change_type": "none", "cluster_id": 1, "cluster_size": 2, "template_mined": "connected to <:IP:>", "cluster_count": 1}
Parameters: [ExtractedParameter(value='192.168.0.1', mask_name='IP')]
> Hex number 0xDEADBEAF
Saving state of 2 clusters with 3 messages, 584 bytes, reason: cluster_created (2)
{"change_type": "cluster_created", "cluster_id": 2, "cluster_size": 1, "template_mined": "Hex number <:HEX:>", "cluster_count": 2}
Parameters: [ExtractedParameter(value='0xDEADBEAF', mask_name='HEX')]
> user davidoh logged in
Saving state of 3 clusters with 4 messages, 648 bytes, reason: cluster_created (3)
{"change_type": "cluster_created", "cluster_id": 3, "cluster_size": 1, "template_mined": "user davidoh logged in", "cluster_count": 3}
Parameters: []
> user eranr logged in
Saving state of 3 clusters with 5 messages, 644 bytes, reason: cluster_template_changed (3)
{"change_type": "cluster_template_changed", "cluster_id": 3, "cluster_size": 2, "template_mined": "user <:*:> logged in", "cluster_count": 3}
Parameters: [ExtractedParameter(value='eranr', mask_name='*')]
> q
Training done. Mined clusters:
ID=1 : size=2 : connected to <:IP:>
ID=2 : size=1 : Hex number <:HEX:>
ID=3 : size=2 : user <:*:> logged in
```
This project is an upgrade of the original [Drain](https://github.com/logpai/logparser/blob/master/logparser/Drain)
project by LogPAI from Python 2.7 to Python 3.6 or later with additional features and bug-fixes.
Read more information about Drain from the following paper:
- Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R.
Lyu. [Drain: An Online Log Parsing Approach with Fixed Depth Tree](http://jiemingzhu.github.io/pub/pjhe_icws2017.pdf),
Proceedings of the 24th International Conference on Web Services (ICWS), 2017.
A Drain3 use case is presented in this blog
post: [Use open source Drain3 log-template mining project to monitor for network outages](https://developer.ibm.com/blogs/how-mining-log-templates-can-help-ai-ops-in-cloud-scale-data-centers)
.
#### New features
- [**Persistence**](#persistence). Save and load Drain state into an [Apache Kafka](https://kafka.apache.org)
topic, [Redis](https://redis.io/) or a file.
- **Streaming**. Support feeding Drain with messages one-be-one.
- [**Masking**](#masking). Replace some message parts (e.g numbers, IPs, emails) with wildcards. This improves the
accuracy of template mining.
- [**Packaging**](#installation). As a pip package.
- [**Configuration**](#configuration). Support for configuring Drain3 using an `.ini` file or a configuration object.
- [**Memory efficiency**](#memory-efficiency). Decrease the memory footprint of internal data structures and introduce
cache to control max memory consumed (thanks to @StanislawSwierc)
- [**Inference mode**](#training-vs-inference-modes). In case you want to separate training and inference phase, Drain3
provides a function for *fast* matching against already-learned clusters (templates) only, without the usage of
regular expressions.
- [**Parameter extraction**](#parameter-extraction). Accurate extraction of the variable parts from a log message as an
ordered list, based on its mined template and the defined masking instructions (thanks to @Impelon).
#### Expected Input and Output
Although Drain3 can be ingested with full raw log message, template mining accuracy can be improved if you feed it with
only the unstructured free-text portion of log messages, by first removing structured parts like timestamp, hostname.
severity, etc.
The output is a dictionary with the following fields:
- `change_type` - indicates either if a new template was identified, an existing template was changed or message added
to an existing cluster.
- `cluster_id` - Sequential ID of the cluster that the log belongs to.
- `cluster_size`- The size (message count) of the cluster that the log belongs to.
- `cluster_count` - Count clusters seen so far.
- `template_mined`- the last template of above cluster_id.
## Configuration
Drain3 is configured using [configparser](https://docs.python.org/3.4/library/configparser.html). By default, config
filename is `drain3.ini` in working directory. It can also be configured passing
a [TemplateMinerConfig](drain3/template_miner_config.py) object to the [TemplateMiner](drain3/template_miner.py)
constructor.
Primary configuration parameters:
- `[DRAIN]/sim_th` - similarity threshold. if percentage of similar tokens for a log message is below this number, a new
log cluster will be created (default 0.4)
- `[DRAIN]/depth` - max depth levels of log clusters. Minimum is 2. (default 4)
- `[DRAIN]/max_children` - max number of children of an internal node (default 100)
- `[DRAIN]/max_clusters` - max number of tracked clusters (unlimited by default). When this number is reached, model
starts replacing old clusters with a new ones according to the LRU cache eviction policy.
- `[DRAIN]/extra_delimiters` - delimiters to apply when splitting log message into words (in addition to whitespace) (
default none). Format is a Python list e.g. `['_', ':']`.
- `[MASKING]/masking` - parameters masking - in json format (default "")
- `[MASKING]/mask_prefix` & `[MASKING]/mask_suffix` - the wrapping of identified parameters in templates. By default, it
is `<` and `>` respectively.
- `[SNAPSHOT]/snapshot_interval_minutes` - time interval for new snapshots (default 1)
- `[SNAPSHOT]/compress_state` - whether to compress the state before saving it. This can be useful when using Kafka
persistence.
## Masking
This feature allows masking of specific variable parts in log message with keywords, prior to passing to Drain. A
well-defined masking can improve template mining accuracy.
Template parameters that do not match any custom mask in the preliminary masking phase are replaced with `<*>` by Drain
core.
Use a list of regular expressions in the configuration file with the format `{'regex_pattern', 'mask_with'}` to set
custom masking.
For example, following masking instructions in `drain3.ini` will mask IP addresses and integers:
```
[MASKING]
masking = [
{"regex_pattern":"((?<=[^A-Za-z0-9])|^)(\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3})((?=[^A-Za-z0-9])|$)", "mask_with": "IP"},
{"regex_pattern":"((?<=[^A-Za-z0-9])|^)([\\-\\+]?\\d+)((?=[^A-Za-z0-9])|$)", "mask_with": "NUM"},
]
]
```
## Persistence
The persistence feature saves and loads a snapshot of Drain3 state in a (compressed) json format. This feature adds
restart resiliency to Drain allowing continuation of activity and maintain learned knowledge across restarts.
Drain3 state includes the search tree and all the clusters that were identified up until snapshot time.
The snapshot also persist number of log messages matched each cluster, and it's `cluster_id`.
An example of a snapshot:
```json
{
"clusters": [
{
"cluster_id": 1,
"log_template_tokens": [
"aa",
"aa",
"<*>"
],
"py/object": "drain3_core.LogCluster",
"size": 2
},
{
"cluster_id": 2,
"log_template_tokens": [
"My",
"IP",
"is",
"<IP>"
],
"py/object": "drain3_core.LogCluster",
"size": 1
}
]
}
```
This example snapshot persist two clusters with the templates:
`["aa", "aa", "<*>"]` - occurs twice
`["My", "IP", "is", "<IP>"]` - occurs once
Snapshots are created in the following events:
- `cluster_created` - in any new template
- `cluster_template_changed` - in any update of a template
- `periodic` - after n minutes from the last snapshot. This is intended to save cluster sizes even if no new template
was identified.
Drain3 currently supports the following persistence modes:
- **Kafka** - The snapshot is saved in a dedicated topic used only for snapshots - the last message in this topic is the
last snapshot that will be loaded after restart. For Kafka persistence, you need to provide: `topic_name`. You may
also provide other `kwargs` that are supported by `kafka.KafkaConsumer` and `kafka.Producer` e.g `bootstrap_servers`
to change Kafka endpoint (default is `localhost:9092`).
- **Redis** - The snapshot is saved to a key in Redis database (contributed by @matabares).
- **File** - The snapshot is saved to a file.
- **Memory** - The snapshot is saved an in-memory object.
- **None** - No persistence.
Drain3 persistence modes can be easily extended to another medium / database by inheriting
the [PersistenceHandler](drain3/persistence_handler.py) class.
## Training vs. Inference modes
In some use-cases, it is required to separate training and inference phases.
In training phase you should call `template_miner.add_log_message(log_line)`. This will match log line against an
existing cluster (if similarity is above threshold) or create a new cluster. It may also change the template of an
existing cluster.
In inference mode you should call `template_miner.match(log_line)`. This will match log line against previously learned
clusters only. No new clusters are created and templates of existing clusters are not changed. Match to existing cluster
has to be perfect, otherwise `None` is returned. You can use persistence option to load previously trained clusters
before inference.
## Memory efficiency
This feature limits the max memory used by the model. It is particularly important for large and possibly unbounded log
streams. This feature is controlled by the `max_clusters​` parameter, which sets the max number of clusters/templates
trarcked by the model. When the limit is reached, new templates start to replace the old ones according to the Least
Recently Used (LRU) eviction policy. This makes the model adapt quickly to the most recent templates in the log stream.
## Parameter Extraction
Drain3 supports retrieving an ordered list of variables in a log message, after its template was mined. Each parameter
is accompanied by the name of the mask that was matched, or `*` for the catch-all mask.
Parameter extraction is performed by generating a regular expression that matches the template and then applying it on
the log message. When `exact_matching` is enabled (by default), the generated regex included the regular expression
defined in relevant masking instructions. If there are multiple masking instructions with the same name, either match
can satisfy the regex. It is possible to disable exact matching so that every variable is matched against a
non-whitespace character sequence. This may improve performance on expanse of accuracy.
Parameter extraction regexes generated per template are cached by default, to improve performance. You can control cache
size with the ` MASKING/parameter_extraction_cache_capacity` configuration parameter.
Sample usage:
```python
result = template_miner.add_log_message(log_line)
params = template_miner.extract_parameters(
result["template_mined"], log_line, exact_matching=True)
```
For the input `"user johndoe logged in 11 minuts ago"`, the template would be:
```
"user <:*:> logged in <:NUM:> minuts ago"
```
... and the extracted parameters:
```
[
ExtractedParameter(value='johndoe', mask_name='*'),
ExtractedParameter(value='11', mask_name='NUM')
]
```
## Installation
Drain3 is available from [PyPI](https://pypi.org/project/drain3). To install use `pip`:
```
pip3 install drain3
```
Note: If you decide to use Kafka or Redis persistence, you should install relevant client library explicitly, since it
is declared as an extra (optional) dependency, by either:
```
pip3 install kafka-python
```
-- or --
```
pip3 install redis
```
## Examples
In order to run the examples directly from the repository, you need to install dependencies. You can do that using *
pipenv* by executing the following command (assuming pipenv already installed):
```shell
python3 -m pipenv sync
```
#### Example 1 - `drain_stdin_demo`
Run [examples/drain_stdin_demo.py](examples/drain_stdin_demo.py) from the root folder of the repository by:
```
python3 -m pipenv run python -m examples.drain_stdin_demo
```
This example uses Drain3 on input from stdin and persist to either Kafka / file / no persistence.
Change `persistence_type` variable in the example to change persistence mode.
Enter several log lines using the command line. Press `q` to end online learn-and-match mode.
Next, demo goes to match (inference) only mode, in which no new clusters are trained and input is matched against
previously trained clusters only. Press `q` again to finish execution.
#### Example 2 - `drain_bigfile_demo`
Run [examples/drain_bigfile_demo](examples/drain_bigfile_demo.py) from the root folder of the repository by:
```
python3 -m pipenv run python -m examples.drain_bigfile_demo
```
This example downloads a real-world log file (of an SSH server) and process all lines, then prints result clusters,
prefix tree and performance statistics.
#### Sample config file
An example `drain3.ini` file with masking instructions can be found in the [examples](examples) folder as well.
## Contributing
Our project welcomes external contributions. Please refer to [CONTRIBUTING.md](CONTRIBUTING.md) for further details.
## Change Log
##### v0.9.11
* Fixed possible DivideByZero error when the profiler is enabled - [Issue #65](https://github.com/IBM/Drain3/issues/65).
##### v0.9.10
* Fixed compatibility issue with Python 3.10 caused by removal of `KeysView`.
##### v0.9.9
* Added support for accurate log message parameter extraction in a new function - `extract_parameters()`. The
function `get_parameter_list()` is deprecated (Thanks to *@Impelon*).
* Refactored `AbstractMaskingInstruction` as a base class for `RegexMaskingInstruction`, allowing to introduce other
types of masking mechanisms.
##### v0.9.8
* Added an option `full_search_strategy` option in `TemplateMiner.match()` and `Drain.match()`. See more info at
Issue [#48](https://github.com/IBM/Drain3/issues/48).
* Added an option to disable parameterization of tokens that contains digits in
configuration: `TemplateMinerConfig.parametrize_numeric_tokens`
* Loading Drain snapshot now only restores clusters state and not configuration parameters. This improves backwards
compatibility when introducing new Drain configuration parameters.
##### v0.9.7
* Fixed bug in original Drain: log clusters were created multiple times for log messages with fewer tokens
than `max_node_depth`.
* Changed `depth` property name to a more descriptive name `max_node_depth` as Drain always subtracts 2 of `depth`
argument value. Also added `log_cluster_depth` property to reflect original value of depth argument (Breaking Change).
* Restricted `depth` param to minimum sensible value of 3.
* Added log cluster count to nodes in `Drain.print_tree()`
* Added optional log cluster details to `Drain.print_tree()`
##### v0.9.6
* Fix issue https://github.com/IBM/Drain3/issues/38: Unnecessary update of LRU cache in case `max_clusters` is used (
thanks *@StanislawSwierc*).
##### v0.9.5
* Added: `TemplateMiner.match()` function for fast matching against existing clusters only.
##### v0.9.4
* Added: `TemplateMiner.get_parameter_list()` function to extract template parameters for raw log message (thanks to *
@cwyalpha*)
* Added option to customize mask wrapper - Instead of the default `<*>`, `<NUM>` etc, you can select any wrapper prefix
or suffix by overriding `TemplateMinerConfig.mask_prefix` and `TemplateMinerConfig.mask_prefix`
* Fixed: config `.ini` file is always read from same folder as source file in demos in tests (thanks *@RobinMaas95*)
##### v0.9.3
* Fixed: comparison of type int with type str in function `add_seq_to_prefix_tree` #28 (bug introduced at v0.9.1)
##### v0.9.2
* Updated jsonpickle version
* Keys `id_to_cluster` dict are now persisted by jsonpickle as `int` instead of `str` to avoid keys type conversion on
load snapshot which caused some issues.
* Added cachetools dependency to `setup.py`.
##### v0.9.1
* Added option to configure `TemplateMiner` using a configuration object (without `.ini` file).
* Support for `print_tree()` to a file/stream.
* Added `MemoryBufferPersistence`
* Added unit tests for state save/load.
* Bug fix: missing type-conversion in state loading, introduced in v0.9.0
* Refactor: Drain prefix tree keys are now of type `str` also for 1st level
(was `int` before), for type consistency.
##### v0.9.0
* Decrease memory footprint of the main data structures.
* Added `max_clusters` option to limit the number of tracked clusters.
* Changed cluster identifier type from str to int
* Added more unit tests and CI
##### v0.8.6
* Added `extra_delimiters` configuration option to Drain
##### v0.8.5
* Profiler improvements
##### v0.8.4
* Masking speed improvement
##### v0.8.3
* Fix: profiler state after load from snapshot
##### v0.8.2
* Fixed snapshot backward compatibility to v0.7.9
##### v0.8.1
* Bugfix in profiling configuration read
##### v0.8.0
* Added time profiling support (disabled by default)
* Added cluster ID to snapshot reason log (credit: @boernd)
* Minor Readability and documentation improvements in Drain
##### v0.7.9
* Fix: `KafkaPersistence` now accepts also `bootstrap_servers` as kwargs.
##### v0.7.8
* Using `kafka-python` package instead of `kafka` (newer).
* Added support for specifying additional configuration as `kwargs` in Kafka persistence handler.
##### v0.7.7
* Corrected default Drain config values.
##### v0.7.6
* Improvement in config file handling (Note: new sections were added instead of `DEFAULT` section)
##### v0.7.5
* Made Kafka and Redis optional requirements
%package -n python3-drain3
Summary: Persistent & streaming log template miner
Provides: python-drain3
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-drain3
# Drain3
## Introduction
Drain3 is an online log template miner that can extract templates (clusters) from a stream of log messages in a timely
manner. It employs a parse tree with fixed depth to guide the log group search process, which effectively avoids
constructing a very deep and unbalanced tree.
Drain3 continuously learns on-the-fly and extracts log templates from raw log entries.
#### Example:
For the input:
```
connected to 10.0.0.1
connected to 192.168.0.1
Hex number 0xDEADBEAF
user davidoh logged in
user eranr logged in
```
Drain3 extracts the following templates:
```
ID=1 : size=2 : connected to <:IP:>
ID=2 : size=1 : Hex number <:HEX:>
ID=3 : size=2 : user <:*:> logged in
```
Full sample program output:
```
Starting Drain3 template miner
Checking for saved state
Saved state not found
Drain3 started with 'FILE' persistence
Starting training mode. Reading from std-in ('q' to finish)
> connected to 10.0.0.1
Saving state of 1 clusters with 1 messages, 528 bytes, reason: cluster_created (1)
{"change_type": "cluster_created", "cluster_id": 1, "cluster_size": 1, "template_mined": "connected to <:IP:>", "cluster_count": 1}
Parameters: [ExtractedParameter(value='10.0.0.1', mask_name='IP')]
> connected to 192.168.0.1
{"change_type": "none", "cluster_id": 1, "cluster_size": 2, "template_mined": "connected to <:IP:>", "cluster_count": 1}
Parameters: [ExtractedParameter(value='192.168.0.1', mask_name='IP')]
> Hex number 0xDEADBEAF
Saving state of 2 clusters with 3 messages, 584 bytes, reason: cluster_created (2)
{"change_type": "cluster_created", "cluster_id": 2, "cluster_size": 1, "template_mined": "Hex number <:HEX:>", "cluster_count": 2}
Parameters: [ExtractedParameter(value='0xDEADBEAF', mask_name='HEX')]
> user davidoh logged in
Saving state of 3 clusters with 4 messages, 648 bytes, reason: cluster_created (3)
{"change_type": "cluster_created", "cluster_id": 3, "cluster_size": 1, "template_mined": "user davidoh logged in", "cluster_count": 3}
Parameters: []
> user eranr logged in
Saving state of 3 clusters with 5 messages, 644 bytes, reason: cluster_template_changed (3)
{"change_type": "cluster_template_changed", "cluster_id": 3, "cluster_size": 2, "template_mined": "user <:*:> logged in", "cluster_count": 3}
Parameters: [ExtractedParameter(value='eranr', mask_name='*')]
> q
Training done. Mined clusters:
ID=1 : size=2 : connected to <:IP:>
ID=2 : size=1 : Hex number <:HEX:>
ID=3 : size=2 : user <:*:> logged in
```
This project is an upgrade of the original [Drain](https://github.com/logpai/logparser/blob/master/logparser/Drain)
project by LogPAI from Python 2.7 to Python 3.6 or later with additional features and bug-fixes.
Read more information about Drain from the following paper:
- Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R.
Lyu. [Drain: An Online Log Parsing Approach with Fixed Depth Tree](http://jiemingzhu.github.io/pub/pjhe_icws2017.pdf),
Proceedings of the 24th International Conference on Web Services (ICWS), 2017.
A Drain3 use case is presented in this blog
post: [Use open source Drain3 log-template mining project to monitor for network outages](https://developer.ibm.com/blogs/how-mining-log-templates-can-help-ai-ops-in-cloud-scale-data-centers)
.
#### New features
- [**Persistence**](#persistence). Save and load Drain state into an [Apache Kafka](https://kafka.apache.org)
topic, [Redis](https://redis.io/) or a file.
- **Streaming**. Support feeding Drain with messages one-be-one.
- [**Masking**](#masking). Replace some message parts (e.g numbers, IPs, emails) with wildcards. This improves the
accuracy of template mining.
- [**Packaging**](#installation). As a pip package.
- [**Configuration**](#configuration). Support for configuring Drain3 using an `.ini` file or a configuration object.
- [**Memory efficiency**](#memory-efficiency). Decrease the memory footprint of internal data structures and introduce
cache to control max memory consumed (thanks to @StanislawSwierc)
- [**Inference mode**](#training-vs-inference-modes). In case you want to separate training and inference phase, Drain3
provides a function for *fast* matching against already-learned clusters (templates) only, without the usage of
regular expressions.
- [**Parameter extraction**](#parameter-extraction). Accurate extraction of the variable parts from a log message as an
ordered list, based on its mined template and the defined masking instructions (thanks to @Impelon).
#### Expected Input and Output
Although Drain3 can be ingested with full raw log message, template mining accuracy can be improved if you feed it with
only the unstructured free-text portion of log messages, by first removing structured parts like timestamp, hostname.
severity, etc.
The output is a dictionary with the following fields:
- `change_type` - indicates either if a new template was identified, an existing template was changed or message added
to an existing cluster.
- `cluster_id` - Sequential ID of the cluster that the log belongs to.
- `cluster_size`- The size (message count) of the cluster that the log belongs to.
- `cluster_count` - Count clusters seen so far.
- `template_mined`- the last template of above cluster_id.
## Configuration
Drain3 is configured using [configparser](https://docs.python.org/3.4/library/configparser.html). By default, config
filename is `drain3.ini` in working directory. It can also be configured passing
a [TemplateMinerConfig](drain3/template_miner_config.py) object to the [TemplateMiner](drain3/template_miner.py)
constructor.
Primary configuration parameters:
- `[DRAIN]/sim_th` - similarity threshold. if percentage of similar tokens for a log message is below this number, a new
log cluster will be created (default 0.4)
- `[DRAIN]/depth` - max depth levels of log clusters. Minimum is 2. (default 4)
- `[DRAIN]/max_children` - max number of children of an internal node (default 100)
- `[DRAIN]/max_clusters` - max number of tracked clusters (unlimited by default). When this number is reached, model
starts replacing old clusters with a new ones according to the LRU cache eviction policy.
- `[DRAIN]/extra_delimiters` - delimiters to apply when splitting log message into words (in addition to whitespace) (
default none). Format is a Python list e.g. `['_', ':']`.
- `[MASKING]/masking` - parameters masking - in json format (default "")
- `[MASKING]/mask_prefix` & `[MASKING]/mask_suffix` - the wrapping of identified parameters in templates. By default, it
is `<` and `>` respectively.
- `[SNAPSHOT]/snapshot_interval_minutes` - time interval for new snapshots (default 1)
- `[SNAPSHOT]/compress_state` - whether to compress the state before saving it. This can be useful when using Kafka
persistence.
## Masking
This feature allows masking of specific variable parts in log message with keywords, prior to passing to Drain. A
well-defined masking can improve template mining accuracy.
Template parameters that do not match any custom mask in the preliminary masking phase are replaced with `<*>` by Drain
core.
Use a list of regular expressions in the configuration file with the format `{'regex_pattern', 'mask_with'}` to set
custom masking.
For example, following masking instructions in `drain3.ini` will mask IP addresses and integers:
```
[MASKING]
masking = [
{"regex_pattern":"((?<=[^A-Za-z0-9])|^)(\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3})((?=[^A-Za-z0-9])|$)", "mask_with": "IP"},
{"regex_pattern":"((?<=[^A-Za-z0-9])|^)([\\-\\+]?\\d+)((?=[^A-Za-z0-9])|$)", "mask_with": "NUM"},
]
]
```
## Persistence
The persistence feature saves and loads a snapshot of Drain3 state in a (compressed) json format. This feature adds
restart resiliency to Drain allowing continuation of activity and maintain learned knowledge across restarts.
Drain3 state includes the search tree and all the clusters that were identified up until snapshot time.
The snapshot also persist number of log messages matched each cluster, and it's `cluster_id`.
An example of a snapshot:
```json
{
"clusters": [
{
"cluster_id": 1,
"log_template_tokens": [
"aa",
"aa",
"<*>"
],
"py/object": "drain3_core.LogCluster",
"size": 2
},
{
"cluster_id": 2,
"log_template_tokens": [
"My",
"IP",
"is",
"<IP>"
],
"py/object": "drain3_core.LogCluster",
"size": 1
}
]
}
```
This example snapshot persist two clusters with the templates:
`["aa", "aa", "<*>"]` - occurs twice
`["My", "IP", "is", "<IP>"]` - occurs once
Snapshots are created in the following events:
- `cluster_created` - in any new template
- `cluster_template_changed` - in any update of a template
- `periodic` - after n minutes from the last snapshot. This is intended to save cluster sizes even if no new template
was identified.
Drain3 currently supports the following persistence modes:
- **Kafka** - The snapshot is saved in a dedicated topic used only for snapshots - the last message in this topic is the
last snapshot that will be loaded after restart. For Kafka persistence, you need to provide: `topic_name`. You may
also provide other `kwargs` that are supported by `kafka.KafkaConsumer` and `kafka.Producer` e.g `bootstrap_servers`
to change Kafka endpoint (default is `localhost:9092`).
- **Redis** - The snapshot is saved to a key in Redis database (contributed by @matabares).
- **File** - The snapshot is saved to a file.
- **Memory** - The snapshot is saved an in-memory object.
- **None** - No persistence.
Drain3 persistence modes can be easily extended to another medium / database by inheriting
the [PersistenceHandler](drain3/persistence_handler.py) class.
## Training vs. Inference modes
In some use-cases, it is required to separate training and inference phases.
In training phase you should call `template_miner.add_log_message(log_line)`. This will match log line against an
existing cluster (if similarity is above threshold) or create a new cluster. It may also change the template of an
existing cluster.
In inference mode you should call `template_miner.match(log_line)`. This will match log line against previously learned
clusters only. No new clusters are created and templates of existing clusters are not changed. Match to existing cluster
has to be perfect, otherwise `None` is returned. You can use persistence option to load previously trained clusters
before inference.
## Memory efficiency
This feature limits the max memory used by the model. It is particularly important for large and possibly unbounded log
streams. This feature is controlled by the `max_clusters​` parameter, which sets the max number of clusters/templates
trarcked by the model. When the limit is reached, new templates start to replace the old ones according to the Least
Recently Used (LRU) eviction policy. This makes the model adapt quickly to the most recent templates in the log stream.
## Parameter Extraction
Drain3 supports retrieving an ordered list of variables in a log message, after its template was mined. Each parameter
is accompanied by the name of the mask that was matched, or `*` for the catch-all mask.
Parameter extraction is performed by generating a regular expression that matches the template and then applying it on
the log message. When `exact_matching` is enabled (by default), the generated regex included the regular expression
defined in relevant masking instructions. If there are multiple masking instructions with the same name, either match
can satisfy the regex. It is possible to disable exact matching so that every variable is matched against a
non-whitespace character sequence. This may improve performance on expanse of accuracy.
Parameter extraction regexes generated per template are cached by default, to improve performance. You can control cache
size with the ` MASKING/parameter_extraction_cache_capacity` configuration parameter.
Sample usage:
```python
result = template_miner.add_log_message(log_line)
params = template_miner.extract_parameters(
result["template_mined"], log_line, exact_matching=True)
```
For the input `"user johndoe logged in 11 minuts ago"`, the template would be:
```
"user <:*:> logged in <:NUM:> minuts ago"
```
... and the extracted parameters:
```
[
ExtractedParameter(value='johndoe', mask_name='*'),
ExtractedParameter(value='11', mask_name='NUM')
]
```
## Installation
Drain3 is available from [PyPI](https://pypi.org/project/drain3). To install use `pip`:
```
pip3 install drain3
```
Note: If you decide to use Kafka or Redis persistence, you should install relevant client library explicitly, since it
is declared as an extra (optional) dependency, by either:
```
pip3 install kafka-python
```
-- or --
```
pip3 install redis
```
## Examples
In order to run the examples directly from the repository, you need to install dependencies. You can do that using *
pipenv* by executing the following command (assuming pipenv already installed):
```shell
python3 -m pipenv sync
```
#### Example 1 - `drain_stdin_demo`
Run [examples/drain_stdin_demo.py](examples/drain_stdin_demo.py) from the root folder of the repository by:
```
python3 -m pipenv run python -m examples.drain_stdin_demo
```
This example uses Drain3 on input from stdin and persist to either Kafka / file / no persistence.
Change `persistence_type` variable in the example to change persistence mode.
Enter several log lines using the command line. Press `q` to end online learn-and-match mode.
Next, demo goes to match (inference) only mode, in which no new clusters are trained and input is matched against
previously trained clusters only. Press `q` again to finish execution.
#### Example 2 - `drain_bigfile_demo`
Run [examples/drain_bigfile_demo](examples/drain_bigfile_demo.py) from the root folder of the repository by:
```
python3 -m pipenv run python -m examples.drain_bigfile_demo
```
This example downloads a real-world log file (of an SSH server) and process all lines, then prints result clusters,
prefix tree and performance statistics.
#### Sample config file
An example `drain3.ini` file with masking instructions can be found in the [examples](examples) folder as well.
## Contributing
Our project welcomes external contributions. Please refer to [CONTRIBUTING.md](CONTRIBUTING.md) for further details.
## Change Log
##### v0.9.11
* Fixed possible DivideByZero error when the profiler is enabled - [Issue #65](https://github.com/IBM/Drain3/issues/65).
##### v0.9.10
* Fixed compatibility issue with Python 3.10 caused by removal of `KeysView`.
##### v0.9.9
* Added support for accurate log message parameter extraction in a new function - `extract_parameters()`. The
function `get_parameter_list()` is deprecated (Thanks to *@Impelon*).
* Refactored `AbstractMaskingInstruction` as a base class for `RegexMaskingInstruction`, allowing to introduce other
types of masking mechanisms.
##### v0.9.8
* Added an option `full_search_strategy` option in `TemplateMiner.match()` and `Drain.match()`. See more info at
Issue [#48](https://github.com/IBM/Drain3/issues/48).
* Added an option to disable parameterization of tokens that contains digits in
configuration: `TemplateMinerConfig.parametrize_numeric_tokens`
* Loading Drain snapshot now only restores clusters state and not configuration parameters. This improves backwards
compatibility when introducing new Drain configuration parameters.
##### v0.9.7
* Fixed bug in original Drain: log clusters were created multiple times for log messages with fewer tokens
than `max_node_depth`.
* Changed `depth` property name to a more descriptive name `max_node_depth` as Drain always subtracts 2 of `depth`
argument value. Also added `log_cluster_depth` property to reflect original value of depth argument (Breaking Change).
* Restricted `depth` param to minimum sensible value of 3.
* Added log cluster count to nodes in `Drain.print_tree()`
* Added optional log cluster details to `Drain.print_tree()`
##### v0.9.6
* Fix issue https://github.com/IBM/Drain3/issues/38: Unnecessary update of LRU cache in case `max_clusters` is used (
thanks *@StanislawSwierc*).
##### v0.9.5
* Added: `TemplateMiner.match()` function for fast matching against existing clusters only.
##### v0.9.4
* Added: `TemplateMiner.get_parameter_list()` function to extract template parameters for raw log message (thanks to *
@cwyalpha*)
* Added option to customize mask wrapper - Instead of the default `<*>`, `<NUM>` etc, you can select any wrapper prefix
or suffix by overriding `TemplateMinerConfig.mask_prefix` and `TemplateMinerConfig.mask_prefix`
* Fixed: config `.ini` file is always read from same folder as source file in demos in tests (thanks *@RobinMaas95*)
##### v0.9.3
* Fixed: comparison of type int with type str in function `add_seq_to_prefix_tree` #28 (bug introduced at v0.9.1)
##### v0.9.2
* Updated jsonpickle version
* Keys `id_to_cluster` dict are now persisted by jsonpickle as `int` instead of `str` to avoid keys type conversion on
load snapshot which caused some issues.
* Added cachetools dependency to `setup.py`.
##### v0.9.1
* Added option to configure `TemplateMiner` using a configuration object (without `.ini` file).
* Support for `print_tree()` to a file/stream.
* Added `MemoryBufferPersistence`
* Added unit tests for state save/load.
* Bug fix: missing type-conversion in state loading, introduced in v0.9.0
* Refactor: Drain prefix tree keys are now of type `str` also for 1st level
(was `int` before), for type consistency.
##### v0.9.0
* Decrease memory footprint of the main data structures.
* Added `max_clusters` option to limit the number of tracked clusters.
* Changed cluster identifier type from str to int
* Added more unit tests and CI
##### v0.8.6
* Added `extra_delimiters` configuration option to Drain
##### v0.8.5
* Profiler improvements
##### v0.8.4
* Masking speed improvement
##### v0.8.3
* Fix: profiler state after load from snapshot
##### v0.8.2
* Fixed snapshot backward compatibility to v0.7.9
##### v0.8.1
* Bugfix in profiling configuration read
##### v0.8.0
* Added time profiling support (disabled by default)
* Added cluster ID to snapshot reason log (credit: @boernd)
* Minor Readability and documentation improvements in Drain
##### v0.7.9
* Fix: `KafkaPersistence` now accepts also `bootstrap_servers` as kwargs.
##### v0.7.8
* Using `kafka-python` package instead of `kafka` (newer).
* Added support for specifying additional configuration as `kwargs` in Kafka persistence handler.
##### v0.7.7
* Corrected default Drain config values.
##### v0.7.6
* Improvement in config file handling (Note: new sections were added instead of `DEFAULT` section)
##### v0.7.5
* Made Kafka and Redis optional requirements
%package help
Summary: Development documents and examples for drain3
Provides: python3-drain3-doc
%description help
# Drain3
## Introduction
Drain3 is an online log template miner that can extract templates (clusters) from a stream of log messages in a timely
manner. It employs a parse tree with fixed depth to guide the log group search process, which effectively avoids
constructing a very deep and unbalanced tree.
Drain3 continuously learns on-the-fly and extracts log templates from raw log entries.
#### Example:
For the input:
```
connected to 10.0.0.1
connected to 192.168.0.1
Hex number 0xDEADBEAF
user davidoh logged in
user eranr logged in
```
Drain3 extracts the following templates:
```
ID=1 : size=2 : connected to <:IP:>
ID=2 : size=1 : Hex number <:HEX:>
ID=3 : size=2 : user <:*:> logged in
```
Full sample program output:
```
Starting Drain3 template miner
Checking for saved state
Saved state not found
Drain3 started with 'FILE' persistence
Starting training mode. Reading from std-in ('q' to finish)
> connected to 10.0.0.1
Saving state of 1 clusters with 1 messages, 528 bytes, reason: cluster_created (1)
{"change_type": "cluster_created", "cluster_id": 1, "cluster_size": 1, "template_mined": "connected to <:IP:>", "cluster_count": 1}
Parameters: [ExtractedParameter(value='10.0.0.1', mask_name='IP')]
> connected to 192.168.0.1
{"change_type": "none", "cluster_id": 1, "cluster_size": 2, "template_mined": "connected to <:IP:>", "cluster_count": 1}
Parameters: [ExtractedParameter(value='192.168.0.1', mask_name='IP')]
> Hex number 0xDEADBEAF
Saving state of 2 clusters with 3 messages, 584 bytes, reason: cluster_created (2)
{"change_type": "cluster_created", "cluster_id": 2, "cluster_size": 1, "template_mined": "Hex number <:HEX:>", "cluster_count": 2}
Parameters: [ExtractedParameter(value='0xDEADBEAF', mask_name='HEX')]
> user davidoh logged in
Saving state of 3 clusters with 4 messages, 648 bytes, reason: cluster_created (3)
{"change_type": "cluster_created", "cluster_id": 3, "cluster_size": 1, "template_mined": "user davidoh logged in", "cluster_count": 3}
Parameters: []
> user eranr logged in
Saving state of 3 clusters with 5 messages, 644 bytes, reason: cluster_template_changed (3)
{"change_type": "cluster_template_changed", "cluster_id": 3, "cluster_size": 2, "template_mined": "user <:*:> logged in", "cluster_count": 3}
Parameters: [ExtractedParameter(value='eranr', mask_name='*')]
> q
Training done. Mined clusters:
ID=1 : size=2 : connected to <:IP:>
ID=2 : size=1 : Hex number <:HEX:>
ID=3 : size=2 : user <:*:> logged in
```
This project is an upgrade of the original [Drain](https://github.com/logpai/logparser/blob/master/logparser/Drain)
project by LogPAI from Python 2.7 to Python 3.6 or later with additional features and bug-fixes.
Read more information about Drain from the following paper:
- Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R.
Lyu. [Drain: An Online Log Parsing Approach with Fixed Depth Tree](http://jiemingzhu.github.io/pub/pjhe_icws2017.pdf),
Proceedings of the 24th International Conference on Web Services (ICWS), 2017.
A Drain3 use case is presented in this blog
post: [Use open source Drain3 log-template mining project to monitor for network outages](https://developer.ibm.com/blogs/how-mining-log-templates-can-help-ai-ops-in-cloud-scale-data-centers)
.
#### New features
- [**Persistence**](#persistence). Save and load Drain state into an [Apache Kafka](https://kafka.apache.org)
topic, [Redis](https://redis.io/) or a file.
- **Streaming**. Support feeding Drain with messages one-be-one.
- [**Masking**](#masking). Replace some message parts (e.g numbers, IPs, emails) with wildcards. This improves the
accuracy of template mining.
- [**Packaging**](#installation). As a pip package.
- [**Configuration**](#configuration). Support for configuring Drain3 using an `.ini` file or a configuration object.
- [**Memory efficiency**](#memory-efficiency). Decrease the memory footprint of internal data structures and introduce
cache to control max memory consumed (thanks to @StanislawSwierc)
- [**Inference mode**](#training-vs-inference-modes). In case you want to separate training and inference phase, Drain3
provides a function for *fast* matching against already-learned clusters (templates) only, without the usage of
regular expressions.
- [**Parameter extraction**](#parameter-extraction). Accurate extraction of the variable parts from a log message as an
ordered list, based on its mined template and the defined masking instructions (thanks to @Impelon).
#### Expected Input and Output
Although Drain3 can be ingested with full raw log message, template mining accuracy can be improved if you feed it with
only the unstructured free-text portion of log messages, by first removing structured parts like timestamp, hostname.
severity, etc.
The output is a dictionary with the following fields:
- `change_type` - indicates either if a new template was identified, an existing template was changed or message added
to an existing cluster.
- `cluster_id` - Sequential ID of the cluster that the log belongs to.
- `cluster_size`- The size (message count) of the cluster that the log belongs to.
- `cluster_count` - Count clusters seen so far.
- `template_mined`- the last template of above cluster_id.
## Configuration
Drain3 is configured using [configparser](https://docs.python.org/3.4/library/configparser.html). By default, config
filename is `drain3.ini` in working directory. It can also be configured passing
a [TemplateMinerConfig](drain3/template_miner_config.py) object to the [TemplateMiner](drain3/template_miner.py)
constructor.
Primary configuration parameters:
- `[DRAIN]/sim_th` - similarity threshold. if percentage of similar tokens for a log message is below this number, a new
log cluster will be created (default 0.4)
- `[DRAIN]/depth` - max depth levels of log clusters. Minimum is 2. (default 4)
- `[DRAIN]/max_children` - max number of children of an internal node (default 100)
- `[DRAIN]/max_clusters` - max number of tracked clusters (unlimited by default). When this number is reached, model
starts replacing old clusters with a new ones according to the LRU cache eviction policy.
- `[DRAIN]/extra_delimiters` - delimiters to apply when splitting log message into words (in addition to whitespace) (
default none). Format is a Python list e.g. `['_', ':']`.
- `[MASKING]/masking` - parameters masking - in json format (default "")
- `[MASKING]/mask_prefix` & `[MASKING]/mask_suffix` - the wrapping of identified parameters in templates. By default, it
is `<` and `>` respectively.
- `[SNAPSHOT]/snapshot_interval_minutes` - time interval for new snapshots (default 1)
- `[SNAPSHOT]/compress_state` - whether to compress the state before saving it. This can be useful when using Kafka
persistence.
## Masking
This feature allows masking of specific variable parts in log message with keywords, prior to passing to Drain. A
well-defined masking can improve template mining accuracy.
Template parameters that do not match any custom mask in the preliminary masking phase are replaced with `<*>` by Drain
core.
Use a list of regular expressions in the configuration file with the format `{'regex_pattern', 'mask_with'}` to set
custom masking.
For example, following masking instructions in `drain3.ini` will mask IP addresses and integers:
```
[MASKING]
masking = [
{"regex_pattern":"((?<=[^A-Za-z0-9])|^)(\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3})((?=[^A-Za-z0-9])|$)", "mask_with": "IP"},
{"regex_pattern":"((?<=[^A-Za-z0-9])|^)([\\-\\+]?\\d+)((?=[^A-Za-z0-9])|$)", "mask_with": "NUM"},
]
]
```
## Persistence
The persistence feature saves and loads a snapshot of Drain3 state in a (compressed) json format. This feature adds
restart resiliency to Drain allowing continuation of activity and maintain learned knowledge across restarts.
Drain3 state includes the search tree and all the clusters that were identified up until snapshot time.
The snapshot also persist number of log messages matched each cluster, and it's `cluster_id`.
An example of a snapshot:
```json
{
"clusters": [
{
"cluster_id": 1,
"log_template_tokens": [
"aa",
"aa",
"<*>"
],
"py/object": "drain3_core.LogCluster",
"size": 2
},
{
"cluster_id": 2,
"log_template_tokens": [
"My",
"IP",
"is",
"<IP>"
],
"py/object": "drain3_core.LogCluster",
"size": 1
}
]
}
```
This example snapshot persist two clusters with the templates:
`["aa", "aa", "<*>"]` - occurs twice
`["My", "IP", "is", "<IP>"]` - occurs once
Snapshots are created in the following events:
- `cluster_created` - in any new template
- `cluster_template_changed` - in any update of a template
- `periodic` - after n minutes from the last snapshot. This is intended to save cluster sizes even if no new template
was identified.
Drain3 currently supports the following persistence modes:
- **Kafka** - The snapshot is saved in a dedicated topic used only for snapshots - the last message in this topic is the
last snapshot that will be loaded after restart. For Kafka persistence, you need to provide: `topic_name`. You may
also provide other `kwargs` that are supported by `kafka.KafkaConsumer` and `kafka.Producer` e.g `bootstrap_servers`
to change Kafka endpoint (default is `localhost:9092`).
- **Redis** - The snapshot is saved to a key in Redis database (contributed by @matabares).
- **File** - The snapshot is saved to a file.
- **Memory** - The snapshot is saved an in-memory object.
- **None** - No persistence.
Drain3 persistence modes can be easily extended to another medium / database by inheriting
the [PersistenceHandler](drain3/persistence_handler.py) class.
## Training vs. Inference modes
In some use-cases, it is required to separate training and inference phases.
In training phase you should call `template_miner.add_log_message(log_line)`. This will match log line against an
existing cluster (if similarity is above threshold) or create a new cluster. It may also change the template of an
existing cluster.
In inference mode you should call `template_miner.match(log_line)`. This will match log line against previously learned
clusters only. No new clusters are created and templates of existing clusters are not changed. Match to existing cluster
has to be perfect, otherwise `None` is returned. You can use persistence option to load previously trained clusters
before inference.
## Memory efficiency
This feature limits the max memory used by the model. It is particularly important for large and possibly unbounded log
streams. This feature is controlled by the `max_clusters​` parameter, which sets the max number of clusters/templates
trarcked by the model. When the limit is reached, new templates start to replace the old ones according to the Least
Recently Used (LRU) eviction policy. This makes the model adapt quickly to the most recent templates in the log stream.
## Parameter Extraction
Drain3 supports retrieving an ordered list of variables in a log message, after its template was mined. Each parameter
is accompanied by the name of the mask that was matched, or `*` for the catch-all mask.
Parameter extraction is performed by generating a regular expression that matches the template and then applying it on
the log message. When `exact_matching` is enabled (by default), the generated regex included the regular expression
defined in relevant masking instructions. If there are multiple masking instructions with the same name, either match
can satisfy the regex. It is possible to disable exact matching so that every variable is matched against a
non-whitespace character sequence. This may improve performance on expanse of accuracy.
Parameter extraction regexes generated per template are cached by default, to improve performance. You can control cache
size with the ` MASKING/parameter_extraction_cache_capacity` configuration parameter.
Sample usage:
```python
result = template_miner.add_log_message(log_line)
params = template_miner.extract_parameters(
result["template_mined"], log_line, exact_matching=True)
```
For the input `"user johndoe logged in 11 minuts ago"`, the template would be:
```
"user <:*:> logged in <:NUM:> minuts ago"
```
... and the extracted parameters:
```
[
ExtractedParameter(value='johndoe', mask_name='*'),
ExtractedParameter(value='11', mask_name='NUM')
]
```
## Installation
Drain3 is available from [PyPI](https://pypi.org/project/drain3). To install use `pip`:
```
pip3 install drain3
```
Note: If you decide to use Kafka or Redis persistence, you should install relevant client library explicitly, since it
is declared as an extra (optional) dependency, by either:
```
pip3 install kafka-python
```
-- or --
```
pip3 install redis
```
## Examples
In order to run the examples directly from the repository, you need to install dependencies. You can do that using *
pipenv* by executing the following command (assuming pipenv already installed):
```shell
python3 -m pipenv sync
```
#### Example 1 - `drain_stdin_demo`
Run [examples/drain_stdin_demo.py](examples/drain_stdin_demo.py) from the root folder of the repository by:
```
python3 -m pipenv run python -m examples.drain_stdin_demo
```
This example uses Drain3 on input from stdin and persist to either Kafka / file / no persistence.
Change `persistence_type` variable in the example to change persistence mode.
Enter several log lines using the command line. Press `q` to end online learn-and-match mode.
Next, demo goes to match (inference) only mode, in which no new clusters are trained and input is matched against
previously trained clusters only. Press `q` again to finish execution.
#### Example 2 - `drain_bigfile_demo`
Run [examples/drain_bigfile_demo](examples/drain_bigfile_demo.py) from the root folder of the repository by:
```
python3 -m pipenv run python -m examples.drain_bigfile_demo
```
This example downloads a real-world log file (of an SSH server) and process all lines, then prints result clusters,
prefix tree and performance statistics.
#### Sample config file
An example `drain3.ini` file with masking instructions can be found in the [examples](examples) folder as well.
## Contributing
Our project welcomes external contributions. Please refer to [CONTRIBUTING.md](CONTRIBUTING.md) for further details.
## Change Log
##### v0.9.11
* Fixed possible DivideByZero error when the profiler is enabled - [Issue #65](https://github.com/IBM/Drain3/issues/65).
##### v0.9.10
* Fixed compatibility issue with Python 3.10 caused by removal of `KeysView`.
##### v0.9.9
* Added support for accurate log message parameter extraction in a new function - `extract_parameters()`. The
function `get_parameter_list()` is deprecated (Thanks to *@Impelon*).
* Refactored `AbstractMaskingInstruction` as a base class for `RegexMaskingInstruction`, allowing to introduce other
types of masking mechanisms.
##### v0.9.8
* Added an option `full_search_strategy` option in `TemplateMiner.match()` and `Drain.match()`. See more info at
Issue [#48](https://github.com/IBM/Drain3/issues/48).
* Added an option to disable parameterization of tokens that contains digits in
configuration: `TemplateMinerConfig.parametrize_numeric_tokens`
* Loading Drain snapshot now only restores clusters state and not configuration parameters. This improves backwards
compatibility when introducing new Drain configuration parameters.
##### v0.9.7
* Fixed bug in original Drain: log clusters were created multiple times for log messages with fewer tokens
than `max_node_depth`.
* Changed `depth` property name to a more descriptive name `max_node_depth` as Drain always subtracts 2 of `depth`
argument value. Also added `log_cluster_depth` property to reflect original value of depth argument (Breaking Change).
* Restricted `depth` param to minimum sensible value of 3.
* Added log cluster count to nodes in `Drain.print_tree()`
* Added optional log cluster details to `Drain.print_tree()`
##### v0.9.6
* Fix issue https://github.com/IBM/Drain3/issues/38: Unnecessary update of LRU cache in case `max_clusters` is used (
thanks *@StanislawSwierc*).
##### v0.9.5
* Added: `TemplateMiner.match()` function for fast matching against existing clusters only.
##### v0.9.4
* Added: `TemplateMiner.get_parameter_list()` function to extract template parameters for raw log message (thanks to *
@cwyalpha*)
* Added option to customize mask wrapper - Instead of the default `<*>`, `<NUM>` etc, you can select any wrapper prefix
or suffix by overriding `TemplateMinerConfig.mask_prefix` and `TemplateMinerConfig.mask_prefix`
* Fixed: config `.ini` file is always read from same folder as source file in demos in tests (thanks *@RobinMaas95*)
##### v0.9.3
* Fixed: comparison of type int with type str in function `add_seq_to_prefix_tree` #28 (bug introduced at v0.9.1)
##### v0.9.2
* Updated jsonpickle version
* Keys `id_to_cluster` dict are now persisted by jsonpickle as `int` instead of `str` to avoid keys type conversion on
load snapshot which caused some issues.
* Added cachetools dependency to `setup.py`.
##### v0.9.1
* Added option to configure `TemplateMiner` using a configuration object (without `.ini` file).
* Support for `print_tree()` to a file/stream.
* Added `MemoryBufferPersistence`
* Added unit tests for state save/load.
* Bug fix: missing type-conversion in state loading, introduced in v0.9.0
* Refactor: Drain prefix tree keys are now of type `str` also for 1st level
(was `int` before), for type consistency.
##### v0.9.0
* Decrease memory footprint of the main data structures.
* Added `max_clusters` option to limit the number of tracked clusters.
* Changed cluster identifier type from str to int
* Added more unit tests and CI
##### v0.8.6
* Added `extra_delimiters` configuration option to Drain
##### v0.8.5
* Profiler improvements
##### v0.8.4
* Masking speed improvement
##### v0.8.3
* Fix: profiler state after load from snapshot
##### v0.8.2
* Fixed snapshot backward compatibility to v0.7.9
##### v0.8.1
* Bugfix in profiling configuration read
##### v0.8.0
* Added time profiling support (disabled by default)
* Added cluster ID to snapshot reason log (credit: @boernd)
* Minor Readability and documentation improvements in Drain
##### v0.7.9
* Fix: `KafkaPersistence` now accepts also `bootstrap_servers` as kwargs.
##### v0.7.8
* Using `kafka-python` package instead of `kafka` (newer).
* Added support for specifying additional configuration as `kwargs` in Kafka persistence handler.
##### v0.7.7
* Corrected default Drain config values.
##### v0.7.6
* Improvement in config file handling (Note: new sections were added instead of `DEFAULT` section)
##### v0.7.5
* Made Kafka and Redis optional requirements
%prep
%autosetup -n drain3-0.9.11
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-drain3 -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.11-1
- Package Spec generated
|