summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-dre.spec215
-rw-r--r--sources1
3 files changed, 217 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..5d6e658 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/DRE-1.1.27.tar.gz
diff --git a/python-dre.spec b/python-dre.spec
new file mode 100644
index 0000000..d18a05d
--- /dev/null
+++ b/python-dre.spec
@@ -0,0 +1,215 @@
+%global _empty_manifest_terminate_build 0
+Name: python-DRE
+Version: 1.1.27
+Release: 1
+Summary: Deep Recursive Embedding for High-Dimensional Data
+License: LICENSE
+URL: https://github.com/zuxinrui/DRE
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/8a/93/f231e241638f757e56e2812173f281cfcec4155f665320c92b2cf36cfac4/DRE-1.1.27.tar.gz
+BuildArch: noarch
+
+Requires: python3-scikit-learn
+Requires: python3-numba
+Requires: python3-torch
+Requires: python3-tqdm
+Requires: python3-ipywidgets
+
+%description
+# Deep Recursive Embedding
+
+Deep Recursive Embedding (DRE) is a novel demensionality reduction method based on a generic deep embedding network (DEN) framework, which is able to learn a parametric mapping from high-dimensional space to low-dimensional space, guided by a recursive training strategy. DRE makes use of the latent data representations for boosted embedding performance.
+
+Lab github DRE page:
+[Tao Lab](https://github.com/tao-aimi/DeepRecursiveEmbedding)
+
+Maintainer's github DRE page:
+[Xinrui Zu](https://github.com/zuxinrui/DeepRecursiveEmbedding)
+
+## MNIST embedding result
+
+![gif](/images/MNIST-conv.gif)
+
+## Installation
+
+DRE can be installed with a simple PyPi command:
+
+`pip install DRE`
+
+The pre-requests of DRE are:
+
+`numpy >= 1.19`
+`scikit-learn >= 0.16`
+`matplotlib`
+`numba >= 0.34`
+`torch >= 1.0`
+
+## How to use DRE
+
+DRE follows the form of `Scikit-learn` APIs, whose `fit_transform` function is for returning the embedding result and `fit` for the whole model:
+
+```python
+from DRE import DeepRecursiveEmbedding
+
+dre = DeepRecursiveEmbedding()
+# return the embedding result:
+y = dre.fit_transform(x)
+# or return the whole model:
+dre.fit(x)
+```
+Copy and run `test_mnist.py` or `test_mnist.ipynb` to check the embedding procedure of MNIST dataset.
+
+##
+
+
+
+
+%package -n python3-DRE
+Summary: Deep Recursive Embedding for High-Dimensional Data
+Provides: python-DRE
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-DRE
+# Deep Recursive Embedding
+
+Deep Recursive Embedding (DRE) is a novel demensionality reduction method based on a generic deep embedding network (DEN) framework, which is able to learn a parametric mapping from high-dimensional space to low-dimensional space, guided by a recursive training strategy. DRE makes use of the latent data representations for boosted embedding performance.
+
+Lab github DRE page:
+[Tao Lab](https://github.com/tao-aimi/DeepRecursiveEmbedding)
+
+Maintainer's github DRE page:
+[Xinrui Zu](https://github.com/zuxinrui/DeepRecursiveEmbedding)
+
+## MNIST embedding result
+
+![gif](/images/MNIST-conv.gif)
+
+## Installation
+
+DRE can be installed with a simple PyPi command:
+
+`pip install DRE`
+
+The pre-requests of DRE are:
+
+`numpy >= 1.19`
+`scikit-learn >= 0.16`
+`matplotlib`
+`numba >= 0.34`
+`torch >= 1.0`
+
+## How to use DRE
+
+DRE follows the form of `Scikit-learn` APIs, whose `fit_transform` function is for returning the embedding result and `fit` for the whole model:
+
+```python
+from DRE import DeepRecursiveEmbedding
+
+dre = DeepRecursiveEmbedding()
+# return the embedding result:
+y = dre.fit_transform(x)
+# or return the whole model:
+dre.fit(x)
+```
+Copy and run `test_mnist.py` or `test_mnist.ipynb` to check the embedding procedure of MNIST dataset.
+
+##
+
+
+
+
+%package help
+Summary: Development documents and examples for DRE
+Provides: python3-DRE-doc
+%description help
+# Deep Recursive Embedding
+
+Deep Recursive Embedding (DRE) is a novel demensionality reduction method based on a generic deep embedding network (DEN) framework, which is able to learn a parametric mapping from high-dimensional space to low-dimensional space, guided by a recursive training strategy. DRE makes use of the latent data representations for boosted embedding performance.
+
+Lab github DRE page:
+[Tao Lab](https://github.com/tao-aimi/DeepRecursiveEmbedding)
+
+Maintainer's github DRE page:
+[Xinrui Zu](https://github.com/zuxinrui/DeepRecursiveEmbedding)
+
+## MNIST embedding result
+
+![gif](/images/MNIST-conv.gif)
+
+## Installation
+
+DRE can be installed with a simple PyPi command:
+
+`pip install DRE`
+
+The pre-requests of DRE are:
+
+`numpy >= 1.19`
+`scikit-learn >= 0.16`
+`matplotlib`
+`numba >= 0.34`
+`torch >= 1.0`
+
+## How to use DRE
+
+DRE follows the form of `Scikit-learn` APIs, whose `fit_transform` function is for returning the embedding result and `fit` for the whole model:
+
+```python
+from DRE import DeepRecursiveEmbedding
+
+dre = DeepRecursiveEmbedding()
+# return the embedding result:
+y = dre.fit_transform(x)
+# or return the whole model:
+dre.fit(x)
+```
+Copy and run `test_mnist.py` or `test_mnist.ipynb` to check the embedding procedure of MNIST dataset.
+
+##
+
+
+
+
+%prep
+%autosetup -n DRE-1.1.27
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-DRE -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.27-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..fe4c506
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+883e9294e42806272e8349fb216fb629 DRE-1.1.27.tar.gz