summaryrefslogtreecommitdiff
path: root/python-dre.spec
blob: d18a05d659faad716c75a5428a770ad13fb5639c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
%global _empty_manifest_terminate_build 0
Name:		python-DRE
Version:	1.1.27
Release:	1
Summary:	Deep Recursive Embedding for High-Dimensional Data
License:	LICENSE
URL:		https://github.com/zuxinrui/DRE
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/8a/93/f231e241638f757e56e2812173f281cfcec4155f665320c92b2cf36cfac4/DRE-1.1.27.tar.gz
BuildArch:	noarch

Requires:	python3-scikit-learn
Requires:	python3-numba
Requires:	python3-torch
Requires:	python3-tqdm
Requires:	python3-ipywidgets

%description
# Deep Recursive Embedding

Deep Recursive Embedding (DRE) is a novel demensionality reduction method based on a generic deep embedding network (DEN) framework, which is able to learn a parametric mapping from high-dimensional space to low-dimensional space, guided by a recursive training strategy. DRE makes use of the latent data representations for boosted embedding performance.

Lab github DRE page:
[Tao Lab](https://github.com/tao-aimi/DeepRecursiveEmbedding)

Maintainer's github DRE page:
[Xinrui Zu](https://github.com/zuxinrui/DeepRecursiveEmbedding)

## MNIST embedding result

![gif](/images/MNIST-conv.gif)

## Installation

DRE can be installed with a simple PyPi command:

`pip install DRE`

The pre-requests of DRE are:

`numpy >= 1.19`
`scikit-learn >= 0.16`
`matplotlib`
`numba >= 0.34`
`torch >= 1.0`

## How to use DRE

DRE follows the form of `Scikit-learn` APIs, whose `fit_transform` function is for returning the embedding result and `fit` for the whole model:

```python
from DRE import DeepRecursiveEmbedding

dre = DeepRecursiveEmbedding()
# return the embedding result:
y = dre.fit_transform(x)
# or return the whole model:
dre.fit(x)
```
Copy and run `test_mnist.py` or `test_mnist.ipynb` to check the embedding procedure of MNIST dataset.

## 




%package -n python3-DRE
Summary:	Deep Recursive Embedding for High-Dimensional Data
Provides:	python-DRE
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-DRE
# Deep Recursive Embedding

Deep Recursive Embedding (DRE) is a novel demensionality reduction method based on a generic deep embedding network (DEN) framework, which is able to learn a parametric mapping from high-dimensional space to low-dimensional space, guided by a recursive training strategy. DRE makes use of the latent data representations for boosted embedding performance.

Lab github DRE page:
[Tao Lab](https://github.com/tao-aimi/DeepRecursiveEmbedding)

Maintainer's github DRE page:
[Xinrui Zu](https://github.com/zuxinrui/DeepRecursiveEmbedding)

## MNIST embedding result

![gif](/images/MNIST-conv.gif)

## Installation

DRE can be installed with a simple PyPi command:

`pip install DRE`

The pre-requests of DRE are:

`numpy >= 1.19`
`scikit-learn >= 0.16`
`matplotlib`
`numba >= 0.34`
`torch >= 1.0`

## How to use DRE

DRE follows the form of `Scikit-learn` APIs, whose `fit_transform` function is for returning the embedding result and `fit` for the whole model:

```python
from DRE import DeepRecursiveEmbedding

dre = DeepRecursiveEmbedding()
# return the embedding result:
y = dre.fit_transform(x)
# or return the whole model:
dre.fit(x)
```
Copy and run `test_mnist.py` or `test_mnist.ipynb` to check the embedding procedure of MNIST dataset.

## 




%package help
Summary:	Development documents and examples for DRE
Provides:	python3-DRE-doc
%description help
# Deep Recursive Embedding

Deep Recursive Embedding (DRE) is a novel demensionality reduction method based on a generic deep embedding network (DEN) framework, which is able to learn a parametric mapping from high-dimensional space to low-dimensional space, guided by a recursive training strategy. DRE makes use of the latent data representations for boosted embedding performance.

Lab github DRE page:
[Tao Lab](https://github.com/tao-aimi/DeepRecursiveEmbedding)

Maintainer's github DRE page:
[Xinrui Zu](https://github.com/zuxinrui/DeepRecursiveEmbedding)

## MNIST embedding result

![gif](/images/MNIST-conv.gif)

## Installation

DRE can be installed with a simple PyPi command:

`pip install DRE`

The pre-requests of DRE are:

`numpy >= 1.19`
`scikit-learn >= 0.16`
`matplotlib`
`numba >= 0.34`
`torch >= 1.0`

## How to use DRE

DRE follows the form of `Scikit-learn` APIs, whose `fit_transform` function is for returning the embedding result and `fit` for the whole model:

```python
from DRE import DeepRecursiveEmbedding

dre = DeepRecursiveEmbedding()
# return the embedding result:
y = dre.fit_transform(x)
# or return the whole model:
dre.fit(x)
```
Copy and run `test_mnist.py` or `test_mnist.ipynb` to check the embedding procedure of MNIST dataset.

## 




%prep
%autosetup -n DRE-1.1.27

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-DRE -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.27-1
- Package Spec generated