1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
|
%global _empty_manifest_terminate_build 0
Name: python-dtaidistance
Version: 2.3.10
Release: 1
Summary: Distance measures for time series (Dynamic Time Warping, fast C implementation)
License: Apache 2.0
URL: https://github.com/wannesm/dtaidistance
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e7/18/04170840514a0d135bcff8f58198e06cf51cfe9a08c38e666e350e7f3f25/dtaidistance-2.3.10.tar.gz
Requires: python3-numpy
Requires: python3-matplotlib
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pytest
Requires: python3-pytest-benchmark
Requires: python3-matplotlib
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-matplotlib
%description
[](https://pypi.org/project/dtaidistance/)
[](https://anaconda.org/conda-forge/dtaidistance)
[](https://dtaidistance.readthedocs.io/en/latest/?badge=latest)
[](https://zenodo.org/badge/latestdoi/80764246)
# Time Series Distances
Library for time series distances (e.g. Dynamic Time Warping) used in the
[DTAI Research Group](https://dtai.cs.kuleuven.be). The library offers a pure
Python implementation and a fast implementation in C. The C implementation
has only Cython as a dependency. It is compatible with Numpy and Pandas and
implemented such that unnecessary data copy operations are avoided.
Documentation: http://dtaidistance.readthedocs.io
Example:
from dtaidistance import dtw
import numpy as np
s1 = np.array([0.0, 0, 1, 2, 1, 0, 1, 0, 0])
s2 = np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0])
d = dtw.distance_fast(s1, s2)
Citing this work:
> Wannes Meert, Kilian Hendrickx, Toon Van Craenendonck & Pieter Robberechts.
> DTAIDistance (Version v2). Zenodo.
> http://doi.org/10.5281/zenodo.5901139
**New in v2**:
- Numpy is now an optional dependency, also to compile the C library
(only Cython is required).
- Small optimizations throughout the C code to improve speed.
- The consistent use of `ssize_t` instead of `int` allows for larger data structures on 64 bit
machines and be more compatible with Numpy.
- The parallelization is now implemented directly in C (included if OpenMP is installed).
- The `max_dist` argument turned out to be similar to Silva and Batista's work
on PrunedDTW [7]. The toolbox now implements a version that is equal to PrunedDTW
since it prunes more partial distances. Additionally, a `use_pruning` argument
is added to automatically set `max_dist` to the Euclidean distance, as suggested
by Silva and Batista, to speed up the computation (a new method `ub_euclidean` is available).
- Support in the C library for multi-dimensional sequences in the `dtaidistance.dtw_ndim`
package.
- DTW Barycenter Averaging for clustering (v2.2).
- Subsequence search and local concurrences (v2.3).
- Support for N-dimensional time series (v2.3.7).
## Installation
$ pip install dtaidistance
or
$ conda install -c conda-forge dtaidistance
The pip installation requires Numpy as a dependency to compile Numpy-compatible
C code (using Cython). However, this dependency is optional and can be removed.
The source code is available at
[github.com/wannesm/dtaidistance](https://github.com/wannesm/dtaidistance).
If you encounter any problems during compilation (e.g. the C-based implementation or OpenMP
is not available), see the
[documentation](https://dtaidistance.readthedocs.io/en/latest/usage/installation.html)
for more options.
## Usage
### Dynamic Time Warping (DTW) Distance Measure
from dtaidistance import dtw
from dtaidistance import dtw_visualisation as dtwvis
import numpy as np
s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
path = dtw.warping_path(s1, s2)
dtwvis.plot_warping(s1, s2, path, filename="warp.png")

#### DTW Distance Measure Between Two Series
Only the distance measure based on two sequences of numbers:
from dtaidistance import dtw
s1 = [0, 0, 1, 2, 1, 0, 1, 0, 0]
s2 = [0, 1, 2, 0, 0, 0, 0, 0, 0]
distance = dtw.distance(s1, s2)
print(distance)
The fastest version (30-300 times) uses c directly but requires an array as input (with the double type),
and (optionally) also prunes computations by setting `max_dist` to the Euclidean upper bound:
from dtaidistance import dtw
import array
s1 = array.array('d',[0, 0, 1, 2, 1, 0, 1, 0, 0])
s2 = array.array('d',[0, 1, 2, 0, 0, 0, 0, 0, 0])
d = dtw.distance_fast(s1, s2, use_pruning=True)
Or you can use a numpy array (with dtype double or float):
from dtaidistance import dtw
import numpy as np
s1 = np.array([0, 0, 1, 2, 1, 0, 1, 0, 0], dtype=np.double)
s2 = np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0])
d = dtw.distance_fast(s1, s2, use_pruning=True)
Check the `__doc__` for information about the available arguments:
print(dtw.distance.__doc__)
A number of options are foreseen to early stop some paths the dynamic programming algorithm is exploring or tune
the distance measure computation:
- `window`: Only allow for shifts up to this amount away from the two diagonals.
- `max_dist`: Stop if the returned distance measure will be larger than this value.
- `max_step`: Do not allow steps larger than this value.
- `max_length_diff`: Return infinity if difference in length of two series is larger.
- `penalty`: Penalty to add if compression or expansion is applied (on top of the distance).
- `psi`: Psi relaxation to ignore begin and/or end of sequences (for cylical sequences) [2].
- `use_pruning`: Prune computations based on the Euclidean upper bound.
#### DTW Distance Measure all warping paths
If, next to the distance, you also want the full matrix to see all possible warping paths:
from dtaidistance import dtw
s1 = [0, 0, 1, 2, 1, 0, 1, 0, 0]
s2 = [0, 1, 2, 0, 0, 0, 0, 0, 0]
distance, paths = dtw.warping_paths(s1, s2)
print(distance)
print(paths)
The matrix with all warping paths can be visualised as follows:
from dtaidistance import dtw
from dtaidistance import dtw_visualisation as dtwvis
import random
import numpy as np
x = np.arange(0, 20, .5)
s1 = np.sin(x)
s2 = np.sin(x - 1)
random.seed(1)
for idx in range(len(s2)):
if random.random() < 0.05:
s2[idx] += (random.random() - 0.5) / 2
d, paths = dtw.warping_paths(s1, s2, window=25, psi=2)
best_path = dtw.best_path(paths)
dtwvis.plot_warpingpaths(s1, s2, paths, best_path)

Notice the `psi` parameter that relaxes the matching at the beginning and end.
In this example this results in a perfect match even though the sine waves are slightly shifted.
#### DTW Distance Measures Between Set of Series
To compute the DTW distance measures between all sequences in a list of sequences, use the method `dtw.distance_matrix`.
You can set variables to use more or less c code (`use_c` and `use_nogil`) and parallel or serial execution
(`parallel`).
The `distance_matrix` method expects a list of lists/arrays:
from dtaidistance import dtw
import numpy as np
series = [
np.array([0, 0, 1, 2, 1, 0, 1, 0, 0], dtype=np.double),
np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0]),
np.array([0.0, 0, 1, 2, 1, 0, 0, 0])]
ds = dtw.distance_matrix_fast(series)
or a matrix (in case all series have the same length):
from dtaidistance import dtw
import numpy as np
series = np.matrix([
[0.0, 0, 1, 2, 1, 0, 1, 0, 0],
[0.0, 1, 2, 0, 0, 0, 0, 0, 0],
[0.0, 0, 1, 2, 1, 0, 0, 0, 0]])
ds = dtw.distance_matrix_fast(series)
#### DTW Distance Measures Between Set of Series, limited to block
You can instruct the computation to only fill part of the distance measures matrix.
For example to distribute the computations over multiple nodes, or to only
compare source series to target series.
from dtaidistance import dtw
import numpy as np
series = np.matrix([
[0., 0, 1, 2, 1, 0, 1, 0, 0],
[0., 1, 2, 0, 0, 0, 0, 0, 0],
[1., 2, 0, 0, 0, 0, 0, 1, 1],
[0., 0, 1, 2, 1, 0, 1, 0, 0],
[0., 1, 2, 0, 0, 0, 0, 0, 0],
[1., 2, 0, 0, 0, 0, 0, 1, 1]])
ds = dtw.distance_matrix_fast(series, block=((1, 4), (3, 5)))
The output in this case will be:
# 0 1 2 3 4 5
[[ inf inf inf inf inf inf] # 0
[ inf inf inf 1.4142 0.0000 inf] # 1
[ inf inf inf 2.2360 1.7320 inf] # 2
[ inf inf inf inf 1.4142 inf] # 3
[ inf inf inf inf inf inf] # 4
[ inf inf inf inf inf inf]] # 5
## Clustering
A distance matrix can be used for time series clustering. You can use existing methods such as
`scipy.cluster.hierarchy.linkage` or one of two included clustering methods (the latter is a
wrapper for the SciPy linkage method).
from dtaidistance import clustering
# Custom Hierarchical clustering
model1 = clustering.Hierarchical(dtw.distance_matrix_fast, {})
cluster_idx = model1.fit(series)
# Augment Hierarchical object to keep track of the full tree
model2 = clustering.HierarchicalTree(model1)
cluster_idx = model2.fit(series)
# SciPy linkage clustering
model3 = clustering.LinkageTree(dtw.distance_matrix_fast, {})
cluster_idx = model3.fit(series)
For models that keep track of the full clustering tree (`HierarchicalTree` or `LinkageTree`), the
tree can be visualised:
model.plot("myplot.png")

## Dependencies
- [Python 3](http://www.python.org)
Optional:
- [Cython](http://cython.org)
- [Numpy](http://www.numpy.org)
- [tqdm](https://github.com/tqdm/tqdm)
- [Matplotlib](https://matplotlib.org)
- [SciPy](https://www.scipy.org)
- [PyClustering](https://pyclustering.github.io)
Development:
- [pytest](http://doc.pytest.org)
- [pytest-benchmark](http://pytest-benchmark.readthedocs.io)
## Contact
- https://people.cs.kuleuven.be/wannes.meert
## References
1. T. K. Vintsyuk,
Speech discrimination by dynamic programming.
Kibernetika, 4:81–88, 1968.
2. H. Sakoe and S. Chiba,
Dynamic programming algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1):43–49, 1978.
3. C. S. Myers and L. R. Rabiner,
A comparative study of several dynamic time-warping algorithms for connected-word recognition.
The Bell System Technical Journal, 60(7):1389–1409, Sept 1981.
4. Mueen, A and Keogh, E,
[Extracting Optimal Performance from Dynamic Time Warping](http://www.cs.unm.edu/~mueen/DTW.pdf),
Tutorial, KDD 2016
5. D. F. Silva, G. E. A. P. A. Batista, and E. Keogh.
[On the effect of endpoints on dynamic time warping](http://www-bcf.usc.edu/~liu32/milets16/paper/MiLeTS_2016_paper_7.pdf),
In SIGKDD Workshop on Mining and Learning from Time Series, II. Association for Computing Machinery-ACM, 2016.
6. C. Yanping, K. Eamonn, H. Bing, B. Nurjahan, B. Anthony, M. Abdullah and B. Gustavo.
[The UCR Time Series Classification Archive](www.cs.ucr.edu/~eamonn/time_series_data/), 2015.
7. D. F. Silva and G. E. Batista.
[Speeding up all-pairwise dynamic time warping matrix calculation](http://sites.labic.icmc.usp.br/dfs/pdf/SDM_PrunedDTW.pdf),
In Proceedings of the 2016 SIAM International Conference on Data Mining, pages 837–845. SIAM, 2016.
## License
DTAI distance code.
Copyright 2016-2022 KU Leuven, DTAI Research Group
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
%package -n python3-dtaidistance
Summary: Distance measures for time series (Dynamic Time Warping, fast C implementation)
Provides: python-dtaidistance
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-dtaidistance
[](https://pypi.org/project/dtaidistance/)
[](https://anaconda.org/conda-forge/dtaidistance)
[](https://dtaidistance.readthedocs.io/en/latest/?badge=latest)
[](https://zenodo.org/badge/latestdoi/80764246)
# Time Series Distances
Library for time series distances (e.g. Dynamic Time Warping) used in the
[DTAI Research Group](https://dtai.cs.kuleuven.be). The library offers a pure
Python implementation and a fast implementation in C. The C implementation
has only Cython as a dependency. It is compatible with Numpy and Pandas and
implemented such that unnecessary data copy operations are avoided.
Documentation: http://dtaidistance.readthedocs.io
Example:
from dtaidistance import dtw
import numpy as np
s1 = np.array([0.0, 0, 1, 2, 1, 0, 1, 0, 0])
s2 = np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0])
d = dtw.distance_fast(s1, s2)
Citing this work:
> Wannes Meert, Kilian Hendrickx, Toon Van Craenendonck & Pieter Robberechts.
> DTAIDistance (Version v2). Zenodo.
> http://doi.org/10.5281/zenodo.5901139
**New in v2**:
- Numpy is now an optional dependency, also to compile the C library
(only Cython is required).
- Small optimizations throughout the C code to improve speed.
- The consistent use of `ssize_t` instead of `int` allows for larger data structures on 64 bit
machines and be more compatible with Numpy.
- The parallelization is now implemented directly in C (included if OpenMP is installed).
- The `max_dist` argument turned out to be similar to Silva and Batista's work
on PrunedDTW [7]. The toolbox now implements a version that is equal to PrunedDTW
since it prunes more partial distances. Additionally, a `use_pruning` argument
is added to automatically set `max_dist` to the Euclidean distance, as suggested
by Silva and Batista, to speed up the computation (a new method `ub_euclidean` is available).
- Support in the C library for multi-dimensional sequences in the `dtaidistance.dtw_ndim`
package.
- DTW Barycenter Averaging for clustering (v2.2).
- Subsequence search and local concurrences (v2.3).
- Support for N-dimensional time series (v2.3.7).
## Installation
$ pip install dtaidistance
or
$ conda install -c conda-forge dtaidistance
The pip installation requires Numpy as a dependency to compile Numpy-compatible
C code (using Cython). However, this dependency is optional and can be removed.
The source code is available at
[github.com/wannesm/dtaidistance](https://github.com/wannesm/dtaidistance).
If you encounter any problems during compilation (e.g. the C-based implementation or OpenMP
is not available), see the
[documentation](https://dtaidistance.readthedocs.io/en/latest/usage/installation.html)
for more options.
## Usage
### Dynamic Time Warping (DTW) Distance Measure
from dtaidistance import dtw
from dtaidistance import dtw_visualisation as dtwvis
import numpy as np
s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
path = dtw.warping_path(s1, s2)
dtwvis.plot_warping(s1, s2, path, filename="warp.png")

#### DTW Distance Measure Between Two Series
Only the distance measure based on two sequences of numbers:
from dtaidistance import dtw
s1 = [0, 0, 1, 2, 1, 0, 1, 0, 0]
s2 = [0, 1, 2, 0, 0, 0, 0, 0, 0]
distance = dtw.distance(s1, s2)
print(distance)
The fastest version (30-300 times) uses c directly but requires an array as input (with the double type),
and (optionally) also prunes computations by setting `max_dist` to the Euclidean upper bound:
from dtaidistance import dtw
import array
s1 = array.array('d',[0, 0, 1, 2, 1, 0, 1, 0, 0])
s2 = array.array('d',[0, 1, 2, 0, 0, 0, 0, 0, 0])
d = dtw.distance_fast(s1, s2, use_pruning=True)
Or you can use a numpy array (with dtype double or float):
from dtaidistance import dtw
import numpy as np
s1 = np.array([0, 0, 1, 2, 1, 0, 1, 0, 0], dtype=np.double)
s2 = np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0])
d = dtw.distance_fast(s1, s2, use_pruning=True)
Check the `__doc__` for information about the available arguments:
print(dtw.distance.__doc__)
A number of options are foreseen to early stop some paths the dynamic programming algorithm is exploring or tune
the distance measure computation:
- `window`: Only allow for shifts up to this amount away from the two diagonals.
- `max_dist`: Stop if the returned distance measure will be larger than this value.
- `max_step`: Do not allow steps larger than this value.
- `max_length_diff`: Return infinity if difference in length of two series is larger.
- `penalty`: Penalty to add if compression or expansion is applied (on top of the distance).
- `psi`: Psi relaxation to ignore begin and/or end of sequences (for cylical sequences) [2].
- `use_pruning`: Prune computations based on the Euclidean upper bound.
#### DTW Distance Measure all warping paths
If, next to the distance, you also want the full matrix to see all possible warping paths:
from dtaidistance import dtw
s1 = [0, 0, 1, 2, 1, 0, 1, 0, 0]
s2 = [0, 1, 2, 0, 0, 0, 0, 0, 0]
distance, paths = dtw.warping_paths(s1, s2)
print(distance)
print(paths)
The matrix with all warping paths can be visualised as follows:
from dtaidistance import dtw
from dtaidistance import dtw_visualisation as dtwvis
import random
import numpy as np
x = np.arange(0, 20, .5)
s1 = np.sin(x)
s2 = np.sin(x - 1)
random.seed(1)
for idx in range(len(s2)):
if random.random() < 0.05:
s2[idx] += (random.random() - 0.5) / 2
d, paths = dtw.warping_paths(s1, s2, window=25, psi=2)
best_path = dtw.best_path(paths)
dtwvis.plot_warpingpaths(s1, s2, paths, best_path)

Notice the `psi` parameter that relaxes the matching at the beginning and end.
In this example this results in a perfect match even though the sine waves are slightly shifted.
#### DTW Distance Measures Between Set of Series
To compute the DTW distance measures between all sequences in a list of sequences, use the method `dtw.distance_matrix`.
You can set variables to use more or less c code (`use_c` and `use_nogil`) and parallel or serial execution
(`parallel`).
The `distance_matrix` method expects a list of lists/arrays:
from dtaidistance import dtw
import numpy as np
series = [
np.array([0, 0, 1, 2, 1, 0, 1, 0, 0], dtype=np.double),
np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0]),
np.array([0.0, 0, 1, 2, 1, 0, 0, 0])]
ds = dtw.distance_matrix_fast(series)
or a matrix (in case all series have the same length):
from dtaidistance import dtw
import numpy as np
series = np.matrix([
[0.0, 0, 1, 2, 1, 0, 1, 0, 0],
[0.0, 1, 2, 0, 0, 0, 0, 0, 0],
[0.0, 0, 1, 2, 1, 0, 0, 0, 0]])
ds = dtw.distance_matrix_fast(series)
#### DTW Distance Measures Between Set of Series, limited to block
You can instruct the computation to only fill part of the distance measures matrix.
For example to distribute the computations over multiple nodes, or to only
compare source series to target series.
from dtaidistance import dtw
import numpy as np
series = np.matrix([
[0., 0, 1, 2, 1, 0, 1, 0, 0],
[0., 1, 2, 0, 0, 0, 0, 0, 0],
[1., 2, 0, 0, 0, 0, 0, 1, 1],
[0., 0, 1, 2, 1, 0, 1, 0, 0],
[0., 1, 2, 0, 0, 0, 0, 0, 0],
[1., 2, 0, 0, 0, 0, 0, 1, 1]])
ds = dtw.distance_matrix_fast(series, block=((1, 4), (3, 5)))
The output in this case will be:
# 0 1 2 3 4 5
[[ inf inf inf inf inf inf] # 0
[ inf inf inf 1.4142 0.0000 inf] # 1
[ inf inf inf 2.2360 1.7320 inf] # 2
[ inf inf inf inf 1.4142 inf] # 3
[ inf inf inf inf inf inf] # 4
[ inf inf inf inf inf inf]] # 5
## Clustering
A distance matrix can be used for time series clustering. You can use existing methods such as
`scipy.cluster.hierarchy.linkage` or one of two included clustering methods (the latter is a
wrapper for the SciPy linkage method).
from dtaidistance import clustering
# Custom Hierarchical clustering
model1 = clustering.Hierarchical(dtw.distance_matrix_fast, {})
cluster_idx = model1.fit(series)
# Augment Hierarchical object to keep track of the full tree
model2 = clustering.HierarchicalTree(model1)
cluster_idx = model2.fit(series)
# SciPy linkage clustering
model3 = clustering.LinkageTree(dtw.distance_matrix_fast, {})
cluster_idx = model3.fit(series)
For models that keep track of the full clustering tree (`HierarchicalTree` or `LinkageTree`), the
tree can be visualised:
model.plot("myplot.png")

## Dependencies
- [Python 3](http://www.python.org)
Optional:
- [Cython](http://cython.org)
- [Numpy](http://www.numpy.org)
- [tqdm](https://github.com/tqdm/tqdm)
- [Matplotlib](https://matplotlib.org)
- [SciPy](https://www.scipy.org)
- [PyClustering](https://pyclustering.github.io)
Development:
- [pytest](http://doc.pytest.org)
- [pytest-benchmark](http://pytest-benchmark.readthedocs.io)
## Contact
- https://people.cs.kuleuven.be/wannes.meert
## References
1. T. K. Vintsyuk,
Speech discrimination by dynamic programming.
Kibernetika, 4:81–88, 1968.
2. H. Sakoe and S. Chiba,
Dynamic programming algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1):43–49, 1978.
3. C. S. Myers and L. R. Rabiner,
A comparative study of several dynamic time-warping algorithms for connected-word recognition.
The Bell System Technical Journal, 60(7):1389–1409, Sept 1981.
4. Mueen, A and Keogh, E,
[Extracting Optimal Performance from Dynamic Time Warping](http://www.cs.unm.edu/~mueen/DTW.pdf),
Tutorial, KDD 2016
5. D. F. Silva, G. E. A. P. A. Batista, and E. Keogh.
[On the effect of endpoints on dynamic time warping](http://www-bcf.usc.edu/~liu32/milets16/paper/MiLeTS_2016_paper_7.pdf),
In SIGKDD Workshop on Mining and Learning from Time Series, II. Association for Computing Machinery-ACM, 2016.
6. C. Yanping, K. Eamonn, H. Bing, B. Nurjahan, B. Anthony, M. Abdullah and B. Gustavo.
[The UCR Time Series Classification Archive](www.cs.ucr.edu/~eamonn/time_series_data/), 2015.
7. D. F. Silva and G. E. Batista.
[Speeding up all-pairwise dynamic time warping matrix calculation](http://sites.labic.icmc.usp.br/dfs/pdf/SDM_PrunedDTW.pdf),
In Proceedings of the 2016 SIAM International Conference on Data Mining, pages 837–845. SIAM, 2016.
## License
DTAI distance code.
Copyright 2016-2022 KU Leuven, DTAI Research Group
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
%package help
Summary: Development documents and examples for dtaidistance
Provides: python3-dtaidistance-doc
%description help
[](https://pypi.org/project/dtaidistance/)
[](https://anaconda.org/conda-forge/dtaidistance)
[](https://dtaidistance.readthedocs.io/en/latest/?badge=latest)
[](https://zenodo.org/badge/latestdoi/80764246)
# Time Series Distances
Library for time series distances (e.g. Dynamic Time Warping) used in the
[DTAI Research Group](https://dtai.cs.kuleuven.be). The library offers a pure
Python implementation and a fast implementation in C. The C implementation
has only Cython as a dependency. It is compatible with Numpy and Pandas and
implemented such that unnecessary data copy operations are avoided.
Documentation: http://dtaidistance.readthedocs.io
Example:
from dtaidistance import dtw
import numpy as np
s1 = np.array([0.0, 0, 1, 2, 1, 0, 1, 0, 0])
s2 = np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0])
d = dtw.distance_fast(s1, s2)
Citing this work:
> Wannes Meert, Kilian Hendrickx, Toon Van Craenendonck & Pieter Robberechts.
> DTAIDistance (Version v2). Zenodo.
> http://doi.org/10.5281/zenodo.5901139
**New in v2**:
- Numpy is now an optional dependency, also to compile the C library
(only Cython is required).
- Small optimizations throughout the C code to improve speed.
- The consistent use of `ssize_t` instead of `int` allows for larger data structures on 64 bit
machines and be more compatible with Numpy.
- The parallelization is now implemented directly in C (included if OpenMP is installed).
- The `max_dist` argument turned out to be similar to Silva and Batista's work
on PrunedDTW [7]. The toolbox now implements a version that is equal to PrunedDTW
since it prunes more partial distances. Additionally, a `use_pruning` argument
is added to automatically set `max_dist` to the Euclidean distance, as suggested
by Silva and Batista, to speed up the computation (a new method `ub_euclidean` is available).
- Support in the C library for multi-dimensional sequences in the `dtaidistance.dtw_ndim`
package.
- DTW Barycenter Averaging for clustering (v2.2).
- Subsequence search and local concurrences (v2.3).
- Support for N-dimensional time series (v2.3.7).
## Installation
$ pip install dtaidistance
or
$ conda install -c conda-forge dtaidistance
The pip installation requires Numpy as a dependency to compile Numpy-compatible
C code (using Cython). However, this dependency is optional and can be removed.
The source code is available at
[github.com/wannesm/dtaidistance](https://github.com/wannesm/dtaidistance).
If you encounter any problems during compilation (e.g. the C-based implementation or OpenMP
is not available), see the
[documentation](https://dtaidistance.readthedocs.io/en/latest/usage/installation.html)
for more options.
## Usage
### Dynamic Time Warping (DTW) Distance Measure
from dtaidistance import dtw
from dtaidistance import dtw_visualisation as dtwvis
import numpy as np
s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
path = dtw.warping_path(s1, s2)
dtwvis.plot_warping(s1, s2, path, filename="warp.png")

#### DTW Distance Measure Between Two Series
Only the distance measure based on two sequences of numbers:
from dtaidistance import dtw
s1 = [0, 0, 1, 2, 1, 0, 1, 0, 0]
s2 = [0, 1, 2, 0, 0, 0, 0, 0, 0]
distance = dtw.distance(s1, s2)
print(distance)
The fastest version (30-300 times) uses c directly but requires an array as input (with the double type),
and (optionally) also prunes computations by setting `max_dist` to the Euclidean upper bound:
from dtaidistance import dtw
import array
s1 = array.array('d',[0, 0, 1, 2, 1, 0, 1, 0, 0])
s2 = array.array('d',[0, 1, 2, 0, 0, 0, 0, 0, 0])
d = dtw.distance_fast(s1, s2, use_pruning=True)
Or you can use a numpy array (with dtype double or float):
from dtaidistance import dtw
import numpy as np
s1 = np.array([0, 0, 1, 2, 1, 0, 1, 0, 0], dtype=np.double)
s2 = np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0])
d = dtw.distance_fast(s1, s2, use_pruning=True)
Check the `__doc__` for information about the available arguments:
print(dtw.distance.__doc__)
A number of options are foreseen to early stop some paths the dynamic programming algorithm is exploring or tune
the distance measure computation:
- `window`: Only allow for shifts up to this amount away from the two diagonals.
- `max_dist`: Stop if the returned distance measure will be larger than this value.
- `max_step`: Do not allow steps larger than this value.
- `max_length_diff`: Return infinity if difference in length of two series is larger.
- `penalty`: Penalty to add if compression or expansion is applied (on top of the distance).
- `psi`: Psi relaxation to ignore begin and/or end of sequences (for cylical sequences) [2].
- `use_pruning`: Prune computations based on the Euclidean upper bound.
#### DTW Distance Measure all warping paths
If, next to the distance, you also want the full matrix to see all possible warping paths:
from dtaidistance import dtw
s1 = [0, 0, 1, 2, 1, 0, 1, 0, 0]
s2 = [0, 1, 2, 0, 0, 0, 0, 0, 0]
distance, paths = dtw.warping_paths(s1, s2)
print(distance)
print(paths)
The matrix with all warping paths can be visualised as follows:
from dtaidistance import dtw
from dtaidistance import dtw_visualisation as dtwvis
import random
import numpy as np
x = np.arange(0, 20, .5)
s1 = np.sin(x)
s2 = np.sin(x - 1)
random.seed(1)
for idx in range(len(s2)):
if random.random() < 0.05:
s2[idx] += (random.random() - 0.5) / 2
d, paths = dtw.warping_paths(s1, s2, window=25, psi=2)
best_path = dtw.best_path(paths)
dtwvis.plot_warpingpaths(s1, s2, paths, best_path)

Notice the `psi` parameter that relaxes the matching at the beginning and end.
In this example this results in a perfect match even though the sine waves are slightly shifted.
#### DTW Distance Measures Between Set of Series
To compute the DTW distance measures between all sequences in a list of sequences, use the method `dtw.distance_matrix`.
You can set variables to use more or less c code (`use_c` and `use_nogil`) and parallel or serial execution
(`parallel`).
The `distance_matrix` method expects a list of lists/arrays:
from dtaidistance import dtw
import numpy as np
series = [
np.array([0, 0, 1, 2, 1, 0, 1, 0, 0], dtype=np.double),
np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0]),
np.array([0.0, 0, 1, 2, 1, 0, 0, 0])]
ds = dtw.distance_matrix_fast(series)
or a matrix (in case all series have the same length):
from dtaidistance import dtw
import numpy as np
series = np.matrix([
[0.0, 0, 1, 2, 1, 0, 1, 0, 0],
[0.0, 1, 2, 0, 0, 0, 0, 0, 0],
[0.0, 0, 1, 2, 1, 0, 0, 0, 0]])
ds = dtw.distance_matrix_fast(series)
#### DTW Distance Measures Between Set of Series, limited to block
You can instruct the computation to only fill part of the distance measures matrix.
For example to distribute the computations over multiple nodes, or to only
compare source series to target series.
from dtaidistance import dtw
import numpy as np
series = np.matrix([
[0., 0, 1, 2, 1, 0, 1, 0, 0],
[0., 1, 2, 0, 0, 0, 0, 0, 0],
[1., 2, 0, 0, 0, 0, 0, 1, 1],
[0., 0, 1, 2, 1, 0, 1, 0, 0],
[0., 1, 2, 0, 0, 0, 0, 0, 0],
[1., 2, 0, 0, 0, 0, 0, 1, 1]])
ds = dtw.distance_matrix_fast(series, block=((1, 4), (3, 5)))
The output in this case will be:
# 0 1 2 3 4 5
[[ inf inf inf inf inf inf] # 0
[ inf inf inf 1.4142 0.0000 inf] # 1
[ inf inf inf 2.2360 1.7320 inf] # 2
[ inf inf inf inf 1.4142 inf] # 3
[ inf inf inf inf inf inf] # 4
[ inf inf inf inf inf inf]] # 5
## Clustering
A distance matrix can be used for time series clustering. You can use existing methods such as
`scipy.cluster.hierarchy.linkage` or one of two included clustering methods (the latter is a
wrapper for the SciPy linkage method).
from dtaidistance import clustering
# Custom Hierarchical clustering
model1 = clustering.Hierarchical(dtw.distance_matrix_fast, {})
cluster_idx = model1.fit(series)
# Augment Hierarchical object to keep track of the full tree
model2 = clustering.HierarchicalTree(model1)
cluster_idx = model2.fit(series)
# SciPy linkage clustering
model3 = clustering.LinkageTree(dtw.distance_matrix_fast, {})
cluster_idx = model3.fit(series)
For models that keep track of the full clustering tree (`HierarchicalTree` or `LinkageTree`), the
tree can be visualised:
model.plot("myplot.png")

## Dependencies
- [Python 3](http://www.python.org)
Optional:
- [Cython](http://cython.org)
- [Numpy](http://www.numpy.org)
- [tqdm](https://github.com/tqdm/tqdm)
- [Matplotlib](https://matplotlib.org)
- [SciPy](https://www.scipy.org)
- [PyClustering](https://pyclustering.github.io)
Development:
- [pytest](http://doc.pytest.org)
- [pytest-benchmark](http://pytest-benchmark.readthedocs.io)
## Contact
- https://people.cs.kuleuven.be/wannes.meert
## References
1. T. K. Vintsyuk,
Speech discrimination by dynamic programming.
Kibernetika, 4:81–88, 1968.
2. H. Sakoe and S. Chiba,
Dynamic programming algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1):43–49, 1978.
3. C. S. Myers and L. R. Rabiner,
A comparative study of several dynamic time-warping algorithms for connected-word recognition.
The Bell System Technical Journal, 60(7):1389–1409, Sept 1981.
4. Mueen, A and Keogh, E,
[Extracting Optimal Performance from Dynamic Time Warping](http://www.cs.unm.edu/~mueen/DTW.pdf),
Tutorial, KDD 2016
5. D. F. Silva, G. E. A. P. A. Batista, and E. Keogh.
[On the effect of endpoints on dynamic time warping](http://www-bcf.usc.edu/~liu32/milets16/paper/MiLeTS_2016_paper_7.pdf),
In SIGKDD Workshop on Mining and Learning from Time Series, II. Association for Computing Machinery-ACM, 2016.
6. C. Yanping, K. Eamonn, H. Bing, B. Nurjahan, B. Anthony, M. Abdullah and B. Gustavo.
[The UCR Time Series Classification Archive](www.cs.ucr.edu/~eamonn/time_series_data/), 2015.
7. D. F. Silva and G. E. Batista.
[Speeding up all-pairwise dynamic time warping matrix calculation](http://sites.labic.icmc.usp.br/dfs/pdf/SDM_PrunedDTW.pdf),
In Proceedings of the 2016 SIAM International Conference on Data Mining, pages 837–845. SIAM, 2016.
## License
DTAI distance code.
Copyright 2016-2022 KU Leuven, DTAI Research Group
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
%prep
%autosetup -n dtaidistance-2.3.10
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dtaidistance -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 2.3.10-1
- Package Spec generated
|