1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
%global _empty_manifest_terminate_build 0
Name: python-dwavebinarycsp
Version: 0.2.0
Release: 1
Summary: Solves constraints satisfaction problems with binary quadratic model samplers
License: Apache 2.0
URL: https://github.com/dwavesystems/dwavebinarycsp
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/62/f3/0b2dbce6ca7a99b02254ceb8135888c117ef80edcf7ca12b7063cd22c8a4/dwavebinarycsp-0.2.0.tar.gz
BuildArch: noarch
Requires: python3-penaltymodel
Requires: python3-networkx
Requires: python3-dimod
%description
Library to construct a binary quadratic model from a constraint satisfaction problem with
small constraints over binary variables.
Below is an example usage:
import dwavebinarycsp
import dimod
csp = dwavebinarycsp.factories.random_2in4sat(8, 4) # 8 variables, 4 clauses
bqm = dwavebinarycsp.stitch(csp)
resp = dimod.ExactSolver().sample(bqm)
for sample, energy in resp.data(['sample', 'energy']):
print(sample, csp.check(sample), energy)
%package -n python3-dwavebinarycsp
Summary: Solves constraints satisfaction problems with binary quadratic model samplers
Provides: python-dwavebinarycsp
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dwavebinarycsp
Library to construct a binary quadratic model from a constraint satisfaction problem with
small constraints over binary variables.
Below is an example usage:
import dwavebinarycsp
import dimod
csp = dwavebinarycsp.factories.random_2in4sat(8, 4) # 8 variables, 4 clauses
bqm = dwavebinarycsp.stitch(csp)
resp = dimod.ExactSolver().sample(bqm)
for sample, energy in resp.data(['sample', 'energy']):
print(sample, csp.check(sample), energy)
%package help
Summary: Development documents and examples for dwavebinarycsp
Provides: python3-dwavebinarycsp-doc
%description help
Library to construct a binary quadratic model from a constraint satisfaction problem with
small constraints over binary variables.
Below is an example usage:
import dwavebinarycsp
import dimod
csp = dwavebinarycsp.factories.random_2in4sat(8, 4) # 8 variables, 4 clauses
bqm = dwavebinarycsp.stitch(csp)
resp = dimod.ExactSolver().sample(bqm)
for sample, energy in resp.data(['sample', 'energy']):
print(sample, csp.check(sample), energy)
%prep
%autosetup -n dwavebinarycsp-0.2.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dwavebinarycsp -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.0-1
- Package Spec generated
|