summaryrefslogtreecommitdiff
path: root/python-e2eml.spec
blob: a9eb05cad2b87e1d6ec01485c49aec088e87c795 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
%global _empty_manifest_terminate_build 0
Name:		python-e2eml
Version:	4.14.20
Release:	1
Summary:	An end-to-end solution for automl
License:	GPL-3.0-only
URL:		https://github.com/ThomasMeissnerDS/e2e_ml
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/0c/d2/3d4b828278589463bda0e825353de6fa485228b0cdbee1a446ac3ca524bb/e2eml-4.14.20.tar.gz
BuildArch:	noarch

Requires:	python3-psutil
Requires:	python3-boostaroota
Requires:	python3-catboost
Requires:	python3-category_encoders
Requires:	python3-datasets
Requires:	python3-dill
Requires:	python3-imbalanced-learn
Requires:	python3-lightgbm
Requires:	python3-matplotlib
Requires:	python3-ngboost
Requires:	python3-nltk
Requires:	python3-numpy
Requires:	python3-optuna
Requires:	python3-pandas
Requires:	python3-plotly
Requires:	python3-pytorch_tabnet
Requires:	python3-seaborn
Requires:	python3-scikit-learn
Requires:	python3-scipy
Requires:	python3-shap
Requires:	python3-spacy
Requires:	python3-textblob
Requires:	python3-torch
Requires:	python3-transformers
Requires:	python3-vowpalwabbit
Requires:	python3-xgboost
Requires:	python3-cupy
Requires:	python3-cython
Requires:	python3-ipython
Requires:	python3-notebook

%description
# e2e ML

> An end to end solution for automl.

Pass in your data, add some information about it and get a full pipelines in
return. Data preprocessing, feature creation, modelling and evaluation with just
a few lines of code.

![Header image](header.png)

## Contents

<!-- toc -->

* [Installation](#installation)
* [Usage example](#usage-example)
* [Linting and Pre-Commit](#linting-and-pre-commit)
* [Disclaimer](#disclaimer)
* [Development](#development)
  * [Adding or Removing Dependencies](#adding-or-removing-dependencies)
  * [Building and Publishing](#building-and-publishing)
  * [Documentation](#documentation)
  * [Pull Requests](#pull-requests)
* [Release History](#release-history)
* [References](#references)
* [Meta](#meta)

<!-- tocstop -->

## Installation

From PyPI:

```sh
pip install e2eml
```

We highly recommend to create a new virtual environment first. Then install
e2e-ml into it. In the environment also download the pretrained spacy model
with. Otherwise e2eml will do this automatically during runtime.

e2eml can also be installed into a RAPIDS environment. For this we recommend to
create a fresh environment following [RAPIDS](https://rapids.ai/start.html)
instructions. After environment installation and activation, a special
installation is needed to not run into installation issues.

Just run:

```sh
pip install e2eml[rapids]
```

This will additionally install cupy and cython to prevent issues. Additionally
it is needed to follow Pytorch [installation instructions](https://pytorch.org/get-started/locally/).
When installing RAPIDs, Pytorch & Spacy for GPU, it is recommended to look
for supported Cuda versions in
all three. If Pytorch related parts fail on runtime, it is recommended to
reinstall a new environment and install Pytorch using pip rather than conda.

```sh
# also spacy supports GPU acceleration
pip install -U spacy[cuda112] #cuda112 depends on your actual cuda version, see: https://spacy.io/usage
```

Otherwise Pytorch will fail trying to run on GPU.

If e2eml shall be installed together with Jupyter core and ipython, please
install with:

```sh
pip install e2eml[full]
```

instead.

## Usage example

e2e has been designed to create state-of-the-art machine learning pipelines with
a few lines of code. Basic example of usage:

```python
import e2eml
from e2eml.classification import classification_blueprints
import pandas as pd
# import data
df = pd.read_csv("Your.csv")

# split into a test/train & holdout set (holdout for prediction illustration here, but not required at all)
train_df = df.head(1000).copy()
holdout_df = df.tail(200).copy() # make sure
# saving the holdout dataset's target for later and delete it from holdout dataset
target = "target_column"
holdout_target = holdout_df[target].copy()
del holdout_df[target]

# instantiate the needed blueprints class
from classification import classification_blueprints # regression bps are available with from regression import regression_blueprints
test_class = classification_blueprints.ClassificationBluePrint(datasource=train_df,
                        target_variable=target,
                        train_split_type='cross',
                        rapids_acceleration=True, # if installed into a conda environment with NVIDIA Rapids, this can be used to accelerate preprocessing with GPU
                        preferred_training_mode='auto', # Auto will automatically identify, if LGBM & Xgboost can use GPU acceleration*
                        tune_mode='accurate' # hyperparameter sets will be validated with 10-fold CV Set this to 'simple' for 1-fold CV
                        #categorical_columns=cat_columns # you can define categorical columns, otherwise e2e does this automatically
                        #date_columns=date_columns # you can also define date columns (expected is YYYY-MM-DD format)
                                                               )

"""
*
'Auto' is recommended for preferred_training_mode parameter, but with 'CPU' and 'GPU' it can also be controlled manually.
If you install Xgboost & LGBM into the same environment as GPU accelerated versions, you can set preferred_training_mode='gpu'.
This will massively improve training times and speed up SHAP feature importance for LGBM and Xgboost related tasks.
For Xgboost this should work out of the box, if installed into a RAPIDS environment.
"""
# run actual blueprint
test_class.ml_bp01_multiclass_full_processing_xgb_prob()

"""
When choosing blueprints several options are available:

Multiclass blueprints can handle binary and multiclass tasks:
- ml_bp00_train_test_binary_full_processing_log_reg_prob()
- ml_bp01_multiclass_full_processing_xgb_prob()
- ml_bp02_multiclass_full_processing_lgbm_prob()
- ml_bp03_multiclass_full_processing_sklearn_stacking_ensemble()
- ml_bp04_multiclass_full_processing_ngboost()
- ml_bp05_multiclass_full_processing_vowpal_wabbit
- ml_bp06_multiclass_full_processing_bert_transformer() # for NLP specifically
- ml_bp07_multiclass_full_processing_tabnet()
- ml_bp08_multiclass_full_processing_ridge()
- ml_bp09_multiclass_full_processing_catboost()
- ml_bp10_multiclass_full_processing_sgd()
- ml_bp11_multiclass_full_processing_quadratic_discriminant_analysis()
- ml_bp12_multiclass_full_processing_svm()
- ml_bp13_multiclass_full_processing_multinomial_nb()
- ml_bp14_multiclass_full_processing_lgbm_focal()
- ml_bp16_multiclass_full_processing_neural_network() # offers fully connected ANN & 1D CNN
- ml_special_binary_full_processing_boosting_blender()
- ml_special_multiclass_auto_model_exploration()
- ml_special_multiclass_full_processing_multimodel_max_voting()

There are regression blueprints as well (in regression module):
- ml_bp10_train_test_regression_full_processing_linear_reg()
- ml_bp11_regression_full_processing_xgboost()
- ml_bp12_regressions_full_processing_lgbm()
- ml_bp13_regression_full_processing_sklearn_stacking_ensemble()
- ml_bp14_regressions_full_processing_ngboost()
- ml_bp15_regression_full_processing_vowpal_wabbit_reg()
- ml_bp16_regressions_full_processing_bert_transformer()
- ml_bp17_regression_full_processing_tabnet_reg()
- ml_bp18_regression_full_processing_ridge_reg()
- ml_bp19_regression_full_processing_elasticnet_reg()
- ml_bp20_regression_full_processing_catboost()
- ml_bp20_regression_full_processing_sgd()
- ml_bp21_regression_full_processing_ransac()
- ml_bp22_regression_full_processing_svm()
- ml_bp23_regressions_full_processing_neural_network() # offers fully connected ANN & 1D CNN
- ml_special_regression_full_processing_multimodel_avg_blender()
- ml_special_regression_auto_model_exploration()

In the time series module we recently embedded blueprints as well:
- ml_bp100_univariate_timeseries_full_processing_auto_arima()
- ml_bp101_multivariate_timeseries_full_processing_lstm()
- ml_bp102_multivariate_timeseries_full_processing_tabnet()
- ml_bp103_multivariate_timeseries_full_processing_rnn()
- ml_bp104_univariate_timeseries_full_processing_holt_winters()

Time series blueprints use less preprocessing on default and cannot use all options like
classification and regression models. Non-time series algorithms like TabNet are different
to their regression counterpart as cross validation is replaced by time series splits and
data scaling covers the target variable as well.

In ensembles algorithms can be chosen via the class attribute:
test_class.special_blueprint_algorithms = {"ridge": True,
                                            "elasticnet": False,
                                             "xgboost": True,
                                             "ngboost": True,
                                             "lgbm": True,
                                             "tabnet": False,
                                             "vowpal_wabbit": True,
                                             "sklearn_ensemble": True,
                                             "catboost": False
                                             }

Also preprocessing steps can be selected:
test_class.blueprint_step_selection_non_nlp = {
            "automatic_type_detection_casting": True,
            "remove_duplicate_column_names": True,
            "reset_dataframe_index": True,
            "fill_infinite_values": True,
            "early_numeric_only_feature_selection": True,
            "delete_high_null_cols": True,
            "data_binning": True,
            "regex_clean_text_data": False,
            "handle_target_skewness": False,
            "datetime_converter": True,
            "pos_tagging_pca": False,  # slow with many categories
            "append_text_sentiment_score": False,
            "tfidf_vectorizer_to_pca": False,  # slow with many categories
            "tfidf_vectorizer": False,
            "rare_feature_processing": True,
            "cardinality_remover": True,
            "categorical_column_embeddings": False,
            "holistic_null_filling": True,  # slow
            "numeric_binarizer_pca": True,
            "onehot_pca": True,
            "category_encoding": True,
            "fill_nulls_static": True,
            "autoencoder_outlier_detection": True,
            "outlier_care": True,
            "delete_outliers": False,
            "remove_collinearity": True,
            "skewness_removal": True,
            "automated_feature_transformation": False,
            "random_trees_embedding": False,
            "clustering_as_a_feature_dbscan": True,
            "clustering_as_a_feature_kmeans_loop": True,
            "clustering_as_a_feature_gaussian_mixture_loop": True,
            "pca_clustering_results": True,
            "svm_outlier_detection_loop": False,
            "autotuned_clustering": False,
            "reduce_memory_footprint": False,
            "scale_data": True,
            "smote": False,
            "automated_feature_selection": True,
            "bruteforce_random_feature_selection": False,  # slow
            "autoencoder_based_oversampling": False,
            "synthetic_data_augmentation": False,
            "final_pca_dimensionality_reduction": False,
            "final_kernel_pca_dimensionality_reduction": False,
            "delete_low_variance_features": False,
            "shap_based_feature_selection": False,
            "delete_unpredictable_training_rows": False,
            "trained_tokenizer_embedding": False,
            "sort_columns_alphabetically": True,
            "use_tabular_gan": False,
        }

The bruteforce_random_feature_selection step is experimental. It showed promising results. The number of trials can be controlled.
This step is useful, if the model overfitted (which should happen rarely), because too many features with too little
feature importance have been considered.
like test_class.hyperparameter_tuning_rounds["bruteforce_random"] = 400 .

Generally the class instance is a control center and gives room for plenty of customization.
Never update the class attributes like shown below.

test_class.tabnet_settings = "batch_size": rec_batch_size,
                                "virtual_batch_size": virtual_batch_size,
                                # pred batch size?
                                "num_workers": 0,
                                "max_epochs": 1000}

test_class.hyperparameter_tuning_rounds = {
            "xgboost": 100,
            "lgbm": 500,
            "lgbm_focal": 50,
            "tabnet": 25,
            "ngboost": 25,
            "sklearn_ensemble": 10,
            "ridge": 500,
            "elasticnet": 100,
            "catboost": 25,
            "sgd": 2000,
            "svm": 50,
            "svm_regression": 50,
            "ransac": 50,
            "multinomial_nb": 100,
            "bruteforce_random": 400,
            "synthetic_data_augmentation": 100,
            "autoencoder_based_oversampling": 200,
            "final_kernel_pca_dimensionality_reduction": 50,
            "final_pca_dimensionality_reduction": 50,
            "auto_arima": 50,
            "holt_winters": 50,
        }

test_class.hyperparameter_tuning_max_runtime_secs = {
            "xgboost": 2 * 60 * 60,
            "lgbm": 2 * 60 * 60,
            "lgbm_focal": 2 * 60 * 60,
            "tabnet": 2 * 60 * 60,
            "ngboost": 2 * 60 * 60,
            "sklearn_ensemble": 2 * 60 * 60,
            "ridge": 2 * 60 * 60,
            "elasticnet": 2 * 60 * 60,
            "catboost": 2 * 60 * 60,
            "sgd": 2 * 60 * 60,
            "svm": 2 * 60 * 60,
            "svm_regression": 2 * 60 * 60,
            "ransac": 2 * 60 * 60,
            "multinomial_nb": 2 * 60 * 60,
            "bruteforce_random": 2 * 60 * 60,
            "synthetic_data_augmentation": 1 * 60 * 60,
            "autoencoder_based_oversampling": 2 * 60 * 60,
            "final_kernel_pca_dimensionality_reduction": 4 * 60 * 60,
            "final_pca_dimensionality_reduction": 2 * 60 * 60,
            "auto_arima": 2 * 60 * 60,
            "holt_winters": 2 * 60 * 60,
        }

When these parameters have to updated, please overwrite the keys individually to not break the blueprints eventually.
I.e.: test_class.hyperparameter_tuning_max_runtime_secs["xgboost"] = 12*60*60 would work fine.

Working with big data can bring all hardware to it's needs. e2eml has been tested with:
- Ryzen 5950x (16 cores CPU)
- Geforce RTX 3090 (24GB VRAM)
- 64GB RAM
e2eml has been able to process 100k rows with 200 columns approximately using these specs stable for non-blended
blueprints. Blended blueprints consume more resources as e2eml keep the trained models in memory as of now.

For data bigger than 100k rows it is possible to limit the amount of data for various preprocessing steps:
- test_class.feature_selection_sample_size = 100000 # for feature selection
- test_class.hyperparameter_tuning_sample_size = 100000 # for model hyperparameter optimization
- test_class.brute_force_selection_sample_size = 15000 # for an experimental feature selection

For binary classification a sample size of 100k datapoints is sufficient in most cases.
Hyperparameter tuning sample size can be much less,
depending on class imbalance.

For multiclass we recommend to start with small samples as algorithms like Xgboost and LGBM will
easily grow in memory consumption
with growing number of classes. LGBM focal or neural network will be good starts here.

Whenever classes are imbalanced (binary & multiclass) we recommend to use the preprocessing step
"autoencoder_based_oversampling".
"""
# After running the blueprint the pipeline is done. I can be saved with:
save_to_production(test_class, file_name='automl_instance')

# The blueprint can be loaded with
loaded_test_class = load_for_production(file_name='automl_instance')

# predict on new data (in this case our holdout) with loaded blueprint
loaded_test_class.ml_bp01_multiclass_full_processing_xgb_prob(holdout_df)

# predictions can be accessed via a class attribute
print(churn_class.predicted_classes['xgboost'])
```

## Linting and Pre-Commit

This project uses pre-commit to enforce style.

To install the pre-commit hooks, first install pre-commit into the project's
virtual environment:

```sh
pip install pre-commit
```

Then install the project hooks:

```sh
pre-commit install
```

Now, whenever you make a commit, the linting and autoformatting will
automatically run.

## Disclaimer

e2e is not designed to quickly iterate over several algorithms and suggest you
the best. It is made to deliver state-of-the-art performance as ready-to-go
blueprints. e2e-ml blueprints contain:

* preprocessing (outlier, rare feature, datetime, categorical and NLP handling)
* feature creation (binning, clustering, categorical and NLP features)
* automated feature selection
* model training (with crossfold validation)
* automated hyperparameter tuning
* model evaluation

This comes at the cost of runtime. Depending on your data we recommend strong
hardware.

## Development

This project uses [poetry](https://python-poetry.org/).

To install the project for development, run:

```sh
poetry install
```

This will install all dependencies and development dependencies into a virtual
environment.

### Adding or Removing Dependencies

To add or remove a dependency, use `poetry add <package>` or
`poetry remove <package>` respectively. Use the `--dev` flag for development
dependencies.

### Building and Publishing

To build and publish the project, run

```sh
poetry publish --build
```

### Documentation

This project comes with documentation. To build the docs, run:

```sh
cd docs
make docs
```

You may then browse the HTML docs at `docs/build/docs/index.html`.

### Pull Requests

We welcome Pull Requests! Please make a PR against the `develop` branch.

## Release History

* 4.14.0
  * Update Python version to support also 3.9
  * Updated import for Pandas' SettingWithCopyWarning warnings
* 4.12.00
  * Added fully connected NN for regression with quantile loss
  * Fixed wrong assignment in RNN model
  * Adjusted default preprocessing steps for regression tasks
  * Shuffling is disabled automatically for all time_series ml_task instances
  * LSTM & RNN default settings will automatically adjust to a more complex architecture,
  * if more than 50 features have been detected
* 4.00.50
  * Added Autoarima & Holt winters for univariate time series predictions
  * Added LSTM & RNN for uni- & multivariate time series prediction
  * Autotuned NNs, LSTM and NLP transformers got an extra setting to set how
    many models shall be created
  * All tabular NNs (except NLPs) store predicted probabilities now
    (binary classifiers will blend them when
    creation of multiple modls has ben specified)
  * Optimized preprocessing order
* 3.02.00
  * Refined GAN architectures
  * Categorical encoding can be chosen via the cat_encoder_model attribute now
  * Fixed a bug when choosing onehot encoding
  * Optimized autoencoder based oversampling for regression
  * Added Autoencoder based oversampling
  * Optimized clustering performance
* 2.50
  * Added tabular GAN (experimental)
  * Minor bug fixes
* 2.13
  * Added neural networks (ANN & soft ordered 1d-CNN) for tabular data
  * Added attribute global_random_state to set state for all instances
  * Added attribute shuffle_during_training to be able to disable shuffling
    during model training (does not apply to all models)
* 2.12
  * Added RAPIDS support for SVM regression
  * Updated Xgboost loss function for regression
  * Fixed a bug in cardinality removal
* 2.11
  * Added datasets library to dependencies
  * Calculation of feature importance can be controlled via class instance now.
    This is helpful when using TF-IDF matrices where 10-fold permutation test
    run out of memory
  * Fixed loading of BERT weights from manual path
  * DEESC parameters can be controlled via class attributes now
  * Fixed a bug with LGBM on regression tasks
  * Adjusted RAPIDS based clustering for use with RAPIDS version 21.12
  * Added RAPIDS as accelerator for feature transformation exploration
  * Performance optimization for clustering & numerical binarizer
  * Added random states to clustering & PCA implementations
  * Improved scaling
  * Stabilized TabNet for regression
* 2.10.04
  * Adjusted dependency for SHAP
  * Fixed a bug where early numeric feature selection failed due to
    the absence of numerical features
* 2.10.03
  * Adjusted dependencies for Pandas, Spacy, Optuna, Setuptools, Transformers
* 2.10.01
  * Added references & citations to Readme
  * Added is_imbalanced flag to Timewalk
  * Removed babel from dependencies & updated some of them
* 2.9.96
  * Timewalk got adjustments
  * Fixed a bug where row deletion has been incompatible with Tabnet
* 2.9.95
  * SHAP based feature selection increased to 20 folds (from 10)
  * less unnecessary print outs
* 2.9.93
  * Added SHAP based feature selection
  * Removed Xgboost from Timewalk as default due to computational and runtime costs
  * Suppress all warnings of LGBM focal during multiclass tasks
* 2.9.92
  * e2eml uses poetry
  * introduction of Github actions to check linting
  * bug fix of LGBM focal failing due to missing hyperparameter tuning specifications
  * preparation for Readthedocs implementation
* 2.9.9
  * Added Multinomial Bayes Classifier
  * Added SVM for regression
  * Refined Sklearn ensembles
* 2.9.8
  * Added Quadrant Discriminent Analysis
  * Added Support Vector machines
  * Added Ransac regressor
* 2.9.7
  * updated Plotly dependency to 5.4.0
  * Improved Xgboost for imbalanced data
* 2.9.6
  * Added TimeTravel and timewalk: TimeTravel will save the class instance after
    each preprocessing step, timewalk will automatically try different
    preprocessing steps with different algorithms to find the best combination
  * Updated dependencies to use newest versions of scikit-learn and
    category-encoders
* 2.9.0
  * bug fixes with synthetic data augmentation for regression
  * bug fix of target encoding during regression
  * enhanced hyperparameter space for autoencoder based oversampling
  * added final PCA dimensionality reduction as optional preprocessing step
* 2.8.1
  * autoencoder based oversampling will go through hyperprameter tuning first
    (for each class individually)
  * optimized TabNet performance
* 2.7.5
  * added oversampling based on variational autoencoder (experimental)
* 2.7.4
  * fixed target encoding for multiclass classification
  * improved performance on multiclass tasks
  * improved Xgboost & TabNet performance on binary classification
  * added auto-tuned clustering as a feature
* 2.6.3
  * small bugfixes
* 2.6.1
  * Hyperparameter tuning does happen on a sample of the train data from now on
    (sample size can be controlled)
  * An experimental feature has been added, which tries to find unpredictable
    training data rows to delete them from the training (this accelerates
    training, but costs a bit model performance)
  * Blueprints can be accelerated with Nvidia RAPIDS (works on clustering only f
    or now)
* 2.5.9
  * optimized loss function for TabNet
* 2.5.1
  * Optimized loss function for synthetic data augmentation
  * Adjusted library dependencies
  * Improved target encoding
* 2.3.1
  * Changed feature selection backend from Xgboost to LGBM
  * POS tagging is off on default from this version
* 2.2.9
  * bug fixes
  * added an experimental feature to optimize training data with synthetic data
  * added optional early feature selection (numeric only)
* 2.2.2
  * transformers can be loaded into Google Colab from Gdrive
* 2.1.2
  * Improved TFIDF vectorizer performance & non transformer NLP applications
  * Improved POS tagging stability
* 2.1.1
  * Completely overworked preprocessing setup (changed API). Preprocessing
    blueprints can be customized through a class attribute now
  * Completely overworked special multimodel blueprints. The paricipating
    algorithms can be customized through a class attribute now
  * Improved NULL handling & regression performance
  * Added Catboost & Elasticnet
  * Updated Readme
  * First unittests
  * Added Stochastic Gradient classifier & regressor
* 1.8.2
  * Added Ridge classifier and regression as new blueprints
* 1.8.1
  * Added another layer of feature selection
* 1.8.0
  * Transformer padding length will be max text length + 20% instead of static
    300
  * Transformers use AutoModelForSequenceClassification instead of hardcoded
    transformers now
  * Hyperparameter tuning rounds and timeout can be controlled globally via
    class attribute now
* 1.7.8
  * Instead of a global probability threshold, e2eml stores threshold for each
    tested model
  * Deprecated binary boosting blender due to lack of performance
  * Added filling of inf values
* 1.7.3
  * Improved preprocessing
  * Improved regression performance
  * Deprecated regression boosting blender and replaced my multi
    model/architecture blender
  * Transformers can optionally discard worst models, but will keep all 5 by
    default
  * e2eml should be installable on Amazon Sagemaker now
* 1.7.0
  * Added TabNet classifier and regressor with automated hyperparameter
    optimization
* 1.6.5
  * improvements of NLP transformers
* 1.5.8
  * Fixes bug around preprocessing_type='nlp'
  * replaced pickle with dill for saving and loading objects
* 1.5.3
  * Added transformer blueprints for NLP classification and regression
  * renamed Vowpal Wabbit blueprint to fit into blueprint naming convention
  * Created "extras" options for library installation: 'rapids' installs extras,
    so e2eml can be installed into into a rapids environment while 'jupyter'
    adds jupyter core and ipython. 'full' installs all of them.
* 1.3.9
  * Fixed issue with automated GPU-acceleration detection and flagging
  * Fixed avg regression blueprint where eval function tried to call
    classification evaluation
  * Moved POS tagging + PCA step into non-NLP pipeline as it showed good results
    in general
  * improved NLP part (more and better feature engineering and preprocessing) of
    blueprints for better performance
  * Added Vowpal Wabbit for classification and regression and replaced stacking
    ensemble in automated model exploration by Vowpal Wabbit as well
  * Set random_state for train_test splits for consistency
  * Fixed sklearn dependency to 0.22.0 due to six import error
* 1.0.1
  * Optimized package requirements
  * Pinned LGBM requirement to version 3.1.0 due to the bug "LightGBMError: bin
    size 257 cannot run on GPU #3339"
* 0.9.9
  * Enabled tune_mode parameter during class instantiation.
  * Updated docstings across all functions and changed model defaults.
  * Multiple bug fixes (LGBM regression accurate mode, label encoding and
    permutation tests).
  * Enhanced user information & better ROC_AUC display
  * Added automated GPU detection for LGBM and Xgboost.
  * Added functions to save and load blueprints
  * architectural changes (preprocessing organized in blueprints as well)
* 0.9.4
  * First release with classification and regression blueprints. (not available
    anymore)

## References

* Focal loss
  * [Focal loss for LGBM](https://maxhalford.github.io/blog/lightgbm-focal-loss/#first-order-derivative)
  * [Focal loss for LGBM multiclass](https://towardsdatascience.com/multi-class-classification-using-focal-loss-and-lightgbm-a6a6dec28872)
* Autoencoder
  * [Variational Autoencoder for imbalanced data](https://github.com/lschmiddey/Autoencoder/blob/master/VAE_for_imbalanced_data.ipynb)
* Target Encoding
  * [Target encoding for multiclass](https://towardsdatascience.com/target-encoding-for-multi-class-classification-c9a7bcb1a53)
* Pytorch-TabNet
  * [Arik, S. O., & Pfister, T. (2019). TabNet: Attentive Interpretable Tabular Learning. arXiv preprint arXiv:1908.07442.](https://arxiv.org/pdf/1908.07442.pdf)
  * [Implementing TabNet in Pytorch](https://towardsdatascience.com/implementing-tabnet-in-pytorch-fc977c383279)
* Ngboost
  * [NGBoost: Natural Gradient Boosting for Probabilistic Prediction, arXiv:1910.03225](https://arxiv.org/abs/1910.03225)
* Vowpal Wabbit
  * [Vowpal Wabbit Research overview](https://vowpalwabbit.org/research.html)

## Meta

Creator: Thomas Meißner – [LinkedIn](https://www.linkedin.com/in/thomas-mei%C3%9Fner-m-a-3808b346)

Consultant: Gabriel Stephen Alexander – [Github](https://github.com/bitsofsteve)

Special thanks to: Alex McKenzie - [LinkedIn](https://de.linkedin.com/in/alex-mckenzie)

[e2eml Github repository](https://github.com/ThomasMeissnerDS/e2e_ml)


%package -n python3-e2eml
Summary:	An end-to-end solution for automl
Provides:	python-e2eml
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-e2eml
# e2e ML

> An end to end solution for automl.

Pass in your data, add some information about it and get a full pipelines in
return. Data preprocessing, feature creation, modelling and evaluation with just
a few lines of code.

![Header image](header.png)

## Contents

<!-- toc -->

* [Installation](#installation)
* [Usage example](#usage-example)
* [Linting and Pre-Commit](#linting-and-pre-commit)
* [Disclaimer](#disclaimer)
* [Development](#development)
  * [Adding or Removing Dependencies](#adding-or-removing-dependencies)
  * [Building and Publishing](#building-and-publishing)
  * [Documentation](#documentation)
  * [Pull Requests](#pull-requests)
* [Release History](#release-history)
* [References](#references)
* [Meta](#meta)

<!-- tocstop -->

## Installation

From PyPI:

```sh
pip install e2eml
```

We highly recommend to create a new virtual environment first. Then install
e2e-ml into it. In the environment also download the pretrained spacy model
with. Otherwise e2eml will do this automatically during runtime.

e2eml can also be installed into a RAPIDS environment. For this we recommend to
create a fresh environment following [RAPIDS](https://rapids.ai/start.html)
instructions. After environment installation and activation, a special
installation is needed to not run into installation issues.

Just run:

```sh
pip install e2eml[rapids]
```

This will additionally install cupy and cython to prevent issues. Additionally
it is needed to follow Pytorch [installation instructions](https://pytorch.org/get-started/locally/).
When installing RAPIDs, Pytorch & Spacy for GPU, it is recommended to look
for supported Cuda versions in
all three. If Pytorch related parts fail on runtime, it is recommended to
reinstall a new environment and install Pytorch using pip rather than conda.

```sh
# also spacy supports GPU acceleration
pip install -U spacy[cuda112] #cuda112 depends on your actual cuda version, see: https://spacy.io/usage
```

Otherwise Pytorch will fail trying to run on GPU.

If e2eml shall be installed together with Jupyter core and ipython, please
install with:

```sh
pip install e2eml[full]
```

instead.

## Usage example

e2e has been designed to create state-of-the-art machine learning pipelines with
a few lines of code. Basic example of usage:

```python
import e2eml
from e2eml.classification import classification_blueprints
import pandas as pd
# import data
df = pd.read_csv("Your.csv")

# split into a test/train & holdout set (holdout for prediction illustration here, but not required at all)
train_df = df.head(1000).copy()
holdout_df = df.tail(200).copy() # make sure
# saving the holdout dataset's target for later and delete it from holdout dataset
target = "target_column"
holdout_target = holdout_df[target].copy()
del holdout_df[target]

# instantiate the needed blueprints class
from classification import classification_blueprints # regression bps are available with from regression import regression_blueprints
test_class = classification_blueprints.ClassificationBluePrint(datasource=train_df,
                        target_variable=target,
                        train_split_type='cross',
                        rapids_acceleration=True, # if installed into a conda environment with NVIDIA Rapids, this can be used to accelerate preprocessing with GPU
                        preferred_training_mode='auto', # Auto will automatically identify, if LGBM & Xgboost can use GPU acceleration*
                        tune_mode='accurate' # hyperparameter sets will be validated with 10-fold CV Set this to 'simple' for 1-fold CV
                        #categorical_columns=cat_columns # you can define categorical columns, otherwise e2e does this automatically
                        #date_columns=date_columns # you can also define date columns (expected is YYYY-MM-DD format)
                                                               )

"""
*
'Auto' is recommended for preferred_training_mode parameter, but with 'CPU' and 'GPU' it can also be controlled manually.
If you install Xgboost & LGBM into the same environment as GPU accelerated versions, you can set preferred_training_mode='gpu'.
This will massively improve training times and speed up SHAP feature importance for LGBM and Xgboost related tasks.
For Xgboost this should work out of the box, if installed into a RAPIDS environment.
"""
# run actual blueprint
test_class.ml_bp01_multiclass_full_processing_xgb_prob()

"""
When choosing blueprints several options are available:

Multiclass blueprints can handle binary and multiclass tasks:
- ml_bp00_train_test_binary_full_processing_log_reg_prob()
- ml_bp01_multiclass_full_processing_xgb_prob()
- ml_bp02_multiclass_full_processing_lgbm_prob()
- ml_bp03_multiclass_full_processing_sklearn_stacking_ensemble()
- ml_bp04_multiclass_full_processing_ngboost()
- ml_bp05_multiclass_full_processing_vowpal_wabbit
- ml_bp06_multiclass_full_processing_bert_transformer() # for NLP specifically
- ml_bp07_multiclass_full_processing_tabnet()
- ml_bp08_multiclass_full_processing_ridge()
- ml_bp09_multiclass_full_processing_catboost()
- ml_bp10_multiclass_full_processing_sgd()
- ml_bp11_multiclass_full_processing_quadratic_discriminant_analysis()
- ml_bp12_multiclass_full_processing_svm()
- ml_bp13_multiclass_full_processing_multinomial_nb()
- ml_bp14_multiclass_full_processing_lgbm_focal()
- ml_bp16_multiclass_full_processing_neural_network() # offers fully connected ANN & 1D CNN
- ml_special_binary_full_processing_boosting_blender()
- ml_special_multiclass_auto_model_exploration()
- ml_special_multiclass_full_processing_multimodel_max_voting()

There are regression blueprints as well (in regression module):
- ml_bp10_train_test_regression_full_processing_linear_reg()
- ml_bp11_regression_full_processing_xgboost()
- ml_bp12_regressions_full_processing_lgbm()
- ml_bp13_regression_full_processing_sklearn_stacking_ensemble()
- ml_bp14_regressions_full_processing_ngboost()
- ml_bp15_regression_full_processing_vowpal_wabbit_reg()
- ml_bp16_regressions_full_processing_bert_transformer()
- ml_bp17_regression_full_processing_tabnet_reg()
- ml_bp18_regression_full_processing_ridge_reg()
- ml_bp19_regression_full_processing_elasticnet_reg()
- ml_bp20_regression_full_processing_catboost()
- ml_bp20_regression_full_processing_sgd()
- ml_bp21_regression_full_processing_ransac()
- ml_bp22_regression_full_processing_svm()
- ml_bp23_regressions_full_processing_neural_network() # offers fully connected ANN & 1D CNN
- ml_special_regression_full_processing_multimodel_avg_blender()
- ml_special_regression_auto_model_exploration()

In the time series module we recently embedded blueprints as well:
- ml_bp100_univariate_timeseries_full_processing_auto_arima()
- ml_bp101_multivariate_timeseries_full_processing_lstm()
- ml_bp102_multivariate_timeseries_full_processing_tabnet()
- ml_bp103_multivariate_timeseries_full_processing_rnn()
- ml_bp104_univariate_timeseries_full_processing_holt_winters()

Time series blueprints use less preprocessing on default and cannot use all options like
classification and regression models. Non-time series algorithms like TabNet are different
to their regression counterpart as cross validation is replaced by time series splits and
data scaling covers the target variable as well.

In ensembles algorithms can be chosen via the class attribute:
test_class.special_blueprint_algorithms = {"ridge": True,
                                            "elasticnet": False,
                                             "xgboost": True,
                                             "ngboost": True,
                                             "lgbm": True,
                                             "tabnet": False,
                                             "vowpal_wabbit": True,
                                             "sklearn_ensemble": True,
                                             "catboost": False
                                             }

Also preprocessing steps can be selected:
test_class.blueprint_step_selection_non_nlp = {
            "automatic_type_detection_casting": True,
            "remove_duplicate_column_names": True,
            "reset_dataframe_index": True,
            "fill_infinite_values": True,
            "early_numeric_only_feature_selection": True,
            "delete_high_null_cols": True,
            "data_binning": True,
            "regex_clean_text_data": False,
            "handle_target_skewness": False,
            "datetime_converter": True,
            "pos_tagging_pca": False,  # slow with many categories
            "append_text_sentiment_score": False,
            "tfidf_vectorizer_to_pca": False,  # slow with many categories
            "tfidf_vectorizer": False,
            "rare_feature_processing": True,
            "cardinality_remover": True,
            "categorical_column_embeddings": False,
            "holistic_null_filling": True,  # slow
            "numeric_binarizer_pca": True,
            "onehot_pca": True,
            "category_encoding": True,
            "fill_nulls_static": True,
            "autoencoder_outlier_detection": True,
            "outlier_care": True,
            "delete_outliers": False,
            "remove_collinearity": True,
            "skewness_removal": True,
            "automated_feature_transformation": False,
            "random_trees_embedding": False,
            "clustering_as_a_feature_dbscan": True,
            "clustering_as_a_feature_kmeans_loop": True,
            "clustering_as_a_feature_gaussian_mixture_loop": True,
            "pca_clustering_results": True,
            "svm_outlier_detection_loop": False,
            "autotuned_clustering": False,
            "reduce_memory_footprint": False,
            "scale_data": True,
            "smote": False,
            "automated_feature_selection": True,
            "bruteforce_random_feature_selection": False,  # slow
            "autoencoder_based_oversampling": False,
            "synthetic_data_augmentation": False,
            "final_pca_dimensionality_reduction": False,
            "final_kernel_pca_dimensionality_reduction": False,
            "delete_low_variance_features": False,
            "shap_based_feature_selection": False,
            "delete_unpredictable_training_rows": False,
            "trained_tokenizer_embedding": False,
            "sort_columns_alphabetically": True,
            "use_tabular_gan": False,
        }

The bruteforce_random_feature_selection step is experimental. It showed promising results. The number of trials can be controlled.
This step is useful, if the model overfitted (which should happen rarely), because too many features with too little
feature importance have been considered.
like test_class.hyperparameter_tuning_rounds["bruteforce_random"] = 400 .

Generally the class instance is a control center and gives room for plenty of customization.
Never update the class attributes like shown below.

test_class.tabnet_settings = "batch_size": rec_batch_size,
                                "virtual_batch_size": virtual_batch_size,
                                # pred batch size?
                                "num_workers": 0,
                                "max_epochs": 1000}

test_class.hyperparameter_tuning_rounds = {
            "xgboost": 100,
            "lgbm": 500,
            "lgbm_focal": 50,
            "tabnet": 25,
            "ngboost": 25,
            "sklearn_ensemble": 10,
            "ridge": 500,
            "elasticnet": 100,
            "catboost": 25,
            "sgd": 2000,
            "svm": 50,
            "svm_regression": 50,
            "ransac": 50,
            "multinomial_nb": 100,
            "bruteforce_random": 400,
            "synthetic_data_augmentation": 100,
            "autoencoder_based_oversampling": 200,
            "final_kernel_pca_dimensionality_reduction": 50,
            "final_pca_dimensionality_reduction": 50,
            "auto_arima": 50,
            "holt_winters": 50,
        }

test_class.hyperparameter_tuning_max_runtime_secs = {
            "xgboost": 2 * 60 * 60,
            "lgbm": 2 * 60 * 60,
            "lgbm_focal": 2 * 60 * 60,
            "tabnet": 2 * 60 * 60,
            "ngboost": 2 * 60 * 60,
            "sklearn_ensemble": 2 * 60 * 60,
            "ridge": 2 * 60 * 60,
            "elasticnet": 2 * 60 * 60,
            "catboost": 2 * 60 * 60,
            "sgd": 2 * 60 * 60,
            "svm": 2 * 60 * 60,
            "svm_regression": 2 * 60 * 60,
            "ransac": 2 * 60 * 60,
            "multinomial_nb": 2 * 60 * 60,
            "bruteforce_random": 2 * 60 * 60,
            "synthetic_data_augmentation": 1 * 60 * 60,
            "autoencoder_based_oversampling": 2 * 60 * 60,
            "final_kernel_pca_dimensionality_reduction": 4 * 60 * 60,
            "final_pca_dimensionality_reduction": 2 * 60 * 60,
            "auto_arima": 2 * 60 * 60,
            "holt_winters": 2 * 60 * 60,
        }

When these parameters have to updated, please overwrite the keys individually to not break the blueprints eventually.
I.e.: test_class.hyperparameter_tuning_max_runtime_secs["xgboost"] = 12*60*60 would work fine.

Working with big data can bring all hardware to it's needs. e2eml has been tested with:
- Ryzen 5950x (16 cores CPU)
- Geforce RTX 3090 (24GB VRAM)
- 64GB RAM
e2eml has been able to process 100k rows with 200 columns approximately using these specs stable for non-blended
blueprints. Blended blueprints consume more resources as e2eml keep the trained models in memory as of now.

For data bigger than 100k rows it is possible to limit the amount of data for various preprocessing steps:
- test_class.feature_selection_sample_size = 100000 # for feature selection
- test_class.hyperparameter_tuning_sample_size = 100000 # for model hyperparameter optimization
- test_class.brute_force_selection_sample_size = 15000 # for an experimental feature selection

For binary classification a sample size of 100k datapoints is sufficient in most cases.
Hyperparameter tuning sample size can be much less,
depending on class imbalance.

For multiclass we recommend to start with small samples as algorithms like Xgboost and LGBM will
easily grow in memory consumption
with growing number of classes. LGBM focal or neural network will be good starts here.

Whenever classes are imbalanced (binary & multiclass) we recommend to use the preprocessing step
"autoencoder_based_oversampling".
"""
# After running the blueprint the pipeline is done. I can be saved with:
save_to_production(test_class, file_name='automl_instance')

# The blueprint can be loaded with
loaded_test_class = load_for_production(file_name='automl_instance')

# predict on new data (in this case our holdout) with loaded blueprint
loaded_test_class.ml_bp01_multiclass_full_processing_xgb_prob(holdout_df)

# predictions can be accessed via a class attribute
print(churn_class.predicted_classes['xgboost'])
```

## Linting and Pre-Commit

This project uses pre-commit to enforce style.

To install the pre-commit hooks, first install pre-commit into the project's
virtual environment:

```sh
pip install pre-commit
```

Then install the project hooks:

```sh
pre-commit install
```

Now, whenever you make a commit, the linting and autoformatting will
automatically run.

## Disclaimer

e2e is not designed to quickly iterate over several algorithms and suggest you
the best. It is made to deliver state-of-the-art performance as ready-to-go
blueprints. e2e-ml blueprints contain:

* preprocessing (outlier, rare feature, datetime, categorical and NLP handling)
* feature creation (binning, clustering, categorical and NLP features)
* automated feature selection
* model training (with crossfold validation)
* automated hyperparameter tuning
* model evaluation

This comes at the cost of runtime. Depending on your data we recommend strong
hardware.

## Development

This project uses [poetry](https://python-poetry.org/).

To install the project for development, run:

```sh
poetry install
```

This will install all dependencies and development dependencies into a virtual
environment.

### Adding or Removing Dependencies

To add or remove a dependency, use `poetry add <package>` or
`poetry remove <package>` respectively. Use the `--dev` flag for development
dependencies.

### Building and Publishing

To build and publish the project, run

```sh
poetry publish --build
```

### Documentation

This project comes with documentation. To build the docs, run:

```sh
cd docs
make docs
```

You may then browse the HTML docs at `docs/build/docs/index.html`.

### Pull Requests

We welcome Pull Requests! Please make a PR against the `develop` branch.

## Release History

* 4.14.0
  * Update Python version to support also 3.9
  * Updated import for Pandas' SettingWithCopyWarning warnings
* 4.12.00
  * Added fully connected NN for regression with quantile loss
  * Fixed wrong assignment in RNN model
  * Adjusted default preprocessing steps for regression tasks
  * Shuffling is disabled automatically for all time_series ml_task instances
  * LSTM & RNN default settings will automatically adjust to a more complex architecture,
  * if more than 50 features have been detected
* 4.00.50
  * Added Autoarima & Holt winters for univariate time series predictions
  * Added LSTM & RNN for uni- & multivariate time series prediction
  * Autotuned NNs, LSTM and NLP transformers got an extra setting to set how
    many models shall be created
  * All tabular NNs (except NLPs) store predicted probabilities now
    (binary classifiers will blend them when
    creation of multiple modls has ben specified)
  * Optimized preprocessing order
* 3.02.00
  * Refined GAN architectures
  * Categorical encoding can be chosen via the cat_encoder_model attribute now
  * Fixed a bug when choosing onehot encoding
  * Optimized autoencoder based oversampling for regression
  * Added Autoencoder based oversampling
  * Optimized clustering performance
* 2.50
  * Added tabular GAN (experimental)
  * Minor bug fixes
* 2.13
  * Added neural networks (ANN & soft ordered 1d-CNN) for tabular data
  * Added attribute global_random_state to set state for all instances
  * Added attribute shuffle_during_training to be able to disable shuffling
    during model training (does not apply to all models)
* 2.12
  * Added RAPIDS support for SVM regression
  * Updated Xgboost loss function for regression
  * Fixed a bug in cardinality removal
* 2.11
  * Added datasets library to dependencies
  * Calculation of feature importance can be controlled via class instance now.
    This is helpful when using TF-IDF matrices where 10-fold permutation test
    run out of memory
  * Fixed loading of BERT weights from manual path
  * DEESC parameters can be controlled via class attributes now
  * Fixed a bug with LGBM on regression tasks
  * Adjusted RAPIDS based clustering for use with RAPIDS version 21.12
  * Added RAPIDS as accelerator for feature transformation exploration
  * Performance optimization for clustering & numerical binarizer
  * Added random states to clustering & PCA implementations
  * Improved scaling
  * Stabilized TabNet for regression
* 2.10.04
  * Adjusted dependency for SHAP
  * Fixed a bug where early numeric feature selection failed due to
    the absence of numerical features
* 2.10.03
  * Adjusted dependencies for Pandas, Spacy, Optuna, Setuptools, Transformers
* 2.10.01
  * Added references & citations to Readme
  * Added is_imbalanced flag to Timewalk
  * Removed babel from dependencies & updated some of them
* 2.9.96
  * Timewalk got adjustments
  * Fixed a bug where row deletion has been incompatible with Tabnet
* 2.9.95
  * SHAP based feature selection increased to 20 folds (from 10)
  * less unnecessary print outs
* 2.9.93
  * Added SHAP based feature selection
  * Removed Xgboost from Timewalk as default due to computational and runtime costs
  * Suppress all warnings of LGBM focal during multiclass tasks
* 2.9.92
  * e2eml uses poetry
  * introduction of Github actions to check linting
  * bug fix of LGBM focal failing due to missing hyperparameter tuning specifications
  * preparation for Readthedocs implementation
* 2.9.9
  * Added Multinomial Bayes Classifier
  * Added SVM for regression
  * Refined Sklearn ensembles
* 2.9.8
  * Added Quadrant Discriminent Analysis
  * Added Support Vector machines
  * Added Ransac regressor
* 2.9.7
  * updated Plotly dependency to 5.4.0
  * Improved Xgboost for imbalanced data
* 2.9.6
  * Added TimeTravel and timewalk: TimeTravel will save the class instance after
    each preprocessing step, timewalk will automatically try different
    preprocessing steps with different algorithms to find the best combination
  * Updated dependencies to use newest versions of scikit-learn and
    category-encoders
* 2.9.0
  * bug fixes with synthetic data augmentation for regression
  * bug fix of target encoding during regression
  * enhanced hyperparameter space for autoencoder based oversampling
  * added final PCA dimensionality reduction as optional preprocessing step
* 2.8.1
  * autoencoder based oversampling will go through hyperprameter tuning first
    (for each class individually)
  * optimized TabNet performance
* 2.7.5
  * added oversampling based on variational autoencoder (experimental)
* 2.7.4
  * fixed target encoding for multiclass classification
  * improved performance on multiclass tasks
  * improved Xgboost & TabNet performance on binary classification
  * added auto-tuned clustering as a feature
* 2.6.3
  * small bugfixes
* 2.6.1
  * Hyperparameter tuning does happen on a sample of the train data from now on
    (sample size can be controlled)
  * An experimental feature has been added, which tries to find unpredictable
    training data rows to delete them from the training (this accelerates
    training, but costs a bit model performance)
  * Blueprints can be accelerated with Nvidia RAPIDS (works on clustering only f
    or now)
* 2.5.9
  * optimized loss function for TabNet
* 2.5.1
  * Optimized loss function for synthetic data augmentation
  * Adjusted library dependencies
  * Improved target encoding
* 2.3.1
  * Changed feature selection backend from Xgboost to LGBM
  * POS tagging is off on default from this version
* 2.2.9
  * bug fixes
  * added an experimental feature to optimize training data with synthetic data
  * added optional early feature selection (numeric only)
* 2.2.2
  * transformers can be loaded into Google Colab from Gdrive
* 2.1.2
  * Improved TFIDF vectorizer performance & non transformer NLP applications
  * Improved POS tagging stability
* 2.1.1
  * Completely overworked preprocessing setup (changed API). Preprocessing
    blueprints can be customized through a class attribute now
  * Completely overworked special multimodel blueprints. The paricipating
    algorithms can be customized through a class attribute now
  * Improved NULL handling & regression performance
  * Added Catboost & Elasticnet
  * Updated Readme
  * First unittests
  * Added Stochastic Gradient classifier & regressor
* 1.8.2
  * Added Ridge classifier and regression as new blueprints
* 1.8.1
  * Added another layer of feature selection
* 1.8.0
  * Transformer padding length will be max text length + 20% instead of static
    300
  * Transformers use AutoModelForSequenceClassification instead of hardcoded
    transformers now
  * Hyperparameter tuning rounds and timeout can be controlled globally via
    class attribute now
* 1.7.8
  * Instead of a global probability threshold, e2eml stores threshold for each
    tested model
  * Deprecated binary boosting blender due to lack of performance
  * Added filling of inf values
* 1.7.3
  * Improved preprocessing
  * Improved regression performance
  * Deprecated regression boosting blender and replaced my multi
    model/architecture blender
  * Transformers can optionally discard worst models, but will keep all 5 by
    default
  * e2eml should be installable on Amazon Sagemaker now
* 1.7.0
  * Added TabNet classifier and regressor with automated hyperparameter
    optimization
* 1.6.5
  * improvements of NLP transformers
* 1.5.8
  * Fixes bug around preprocessing_type='nlp'
  * replaced pickle with dill for saving and loading objects
* 1.5.3
  * Added transformer blueprints for NLP classification and regression
  * renamed Vowpal Wabbit blueprint to fit into blueprint naming convention
  * Created "extras" options for library installation: 'rapids' installs extras,
    so e2eml can be installed into into a rapids environment while 'jupyter'
    adds jupyter core and ipython. 'full' installs all of them.
* 1.3.9
  * Fixed issue with automated GPU-acceleration detection and flagging
  * Fixed avg regression blueprint where eval function tried to call
    classification evaluation
  * Moved POS tagging + PCA step into non-NLP pipeline as it showed good results
    in general
  * improved NLP part (more and better feature engineering and preprocessing) of
    blueprints for better performance
  * Added Vowpal Wabbit for classification and regression and replaced stacking
    ensemble in automated model exploration by Vowpal Wabbit as well
  * Set random_state for train_test splits for consistency
  * Fixed sklearn dependency to 0.22.0 due to six import error
* 1.0.1
  * Optimized package requirements
  * Pinned LGBM requirement to version 3.1.0 due to the bug "LightGBMError: bin
    size 257 cannot run on GPU #3339"
* 0.9.9
  * Enabled tune_mode parameter during class instantiation.
  * Updated docstings across all functions and changed model defaults.
  * Multiple bug fixes (LGBM regression accurate mode, label encoding and
    permutation tests).
  * Enhanced user information & better ROC_AUC display
  * Added automated GPU detection for LGBM and Xgboost.
  * Added functions to save and load blueprints
  * architectural changes (preprocessing organized in blueprints as well)
* 0.9.4
  * First release with classification and regression blueprints. (not available
    anymore)

## References

* Focal loss
  * [Focal loss for LGBM](https://maxhalford.github.io/blog/lightgbm-focal-loss/#first-order-derivative)
  * [Focal loss for LGBM multiclass](https://towardsdatascience.com/multi-class-classification-using-focal-loss-and-lightgbm-a6a6dec28872)
* Autoencoder
  * [Variational Autoencoder for imbalanced data](https://github.com/lschmiddey/Autoencoder/blob/master/VAE_for_imbalanced_data.ipynb)
* Target Encoding
  * [Target encoding for multiclass](https://towardsdatascience.com/target-encoding-for-multi-class-classification-c9a7bcb1a53)
* Pytorch-TabNet
  * [Arik, S. O., & Pfister, T. (2019). TabNet: Attentive Interpretable Tabular Learning. arXiv preprint arXiv:1908.07442.](https://arxiv.org/pdf/1908.07442.pdf)
  * [Implementing TabNet in Pytorch](https://towardsdatascience.com/implementing-tabnet-in-pytorch-fc977c383279)
* Ngboost
  * [NGBoost: Natural Gradient Boosting for Probabilistic Prediction, arXiv:1910.03225](https://arxiv.org/abs/1910.03225)
* Vowpal Wabbit
  * [Vowpal Wabbit Research overview](https://vowpalwabbit.org/research.html)

## Meta

Creator: Thomas Meißner – [LinkedIn](https://www.linkedin.com/in/thomas-mei%C3%9Fner-m-a-3808b346)

Consultant: Gabriel Stephen Alexander – [Github](https://github.com/bitsofsteve)

Special thanks to: Alex McKenzie - [LinkedIn](https://de.linkedin.com/in/alex-mckenzie)

[e2eml Github repository](https://github.com/ThomasMeissnerDS/e2e_ml)


%package help
Summary:	Development documents and examples for e2eml
Provides:	python3-e2eml-doc
%description help
# e2e ML

> An end to end solution for automl.

Pass in your data, add some information about it and get a full pipelines in
return. Data preprocessing, feature creation, modelling and evaluation with just
a few lines of code.

![Header image](header.png)

## Contents

<!-- toc -->

* [Installation](#installation)
* [Usage example](#usage-example)
* [Linting and Pre-Commit](#linting-and-pre-commit)
* [Disclaimer](#disclaimer)
* [Development](#development)
  * [Adding or Removing Dependencies](#adding-or-removing-dependencies)
  * [Building and Publishing](#building-and-publishing)
  * [Documentation](#documentation)
  * [Pull Requests](#pull-requests)
* [Release History](#release-history)
* [References](#references)
* [Meta](#meta)

<!-- tocstop -->

## Installation

From PyPI:

```sh
pip install e2eml
```

We highly recommend to create a new virtual environment first. Then install
e2e-ml into it. In the environment also download the pretrained spacy model
with. Otherwise e2eml will do this automatically during runtime.

e2eml can also be installed into a RAPIDS environment. For this we recommend to
create a fresh environment following [RAPIDS](https://rapids.ai/start.html)
instructions. After environment installation and activation, a special
installation is needed to not run into installation issues.

Just run:

```sh
pip install e2eml[rapids]
```

This will additionally install cupy and cython to prevent issues. Additionally
it is needed to follow Pytorch [installation instructions](https://pytorch.org/get-started/locally/).
When installing RAPIDs, Pytorch & Spacy for GPU, it is recommended to look
for supported Cuda versions in
all three. If Pytorch related parts fail on runtime, it is recommended to
reinstall a new environment and install Pytorch using pip rather than conda.

```sh
# also spacy supports GPU acceleration
pip install -U spacy[cuda112] #cuda112 depends on your actual cuda version, see: https://spacy.io/usage
```

Otherwise Pytorch will fail trying to run on GPU.

If e2eml shall be installed together with Jupyter core and ipython, please
install with:

```sh
pip install e2eml[full]
```

instead.

## Usage example

e2e has been designed to create state-of-the-art machine learning pipelines with
a few lines of code. Basic example of usage:

```python
import e2eml
from e2eml.classification import classification_blueprints
import pandas as pd
# import data
df = pd.read_csv("Your.csv")

# split into a test/train & holdout set (holdout for prediction illustration here, but not required at all)
train_df = df.head(1000).copy()
holdout_df = df.tail(200).copy() # make sure
# saving the holdout dataset's target for later and delete it from holdout dataset
target = "target_column"
holdout_target = holdout_df[target].copy()
del holdout_df[target]

# instantiate the needed blueprints class
from classification import classification_blueprints # regression bps are available with from regression import regression_blueprints
test_class = classification_blueprints.ClassificationBluePrint(datasource=train_df,
                        target_variable=target,
                        train_split_type='cross',
                        rapids_acceleration=True, # if installed into a conda environment with NVIDIA Rapids, this can be used to accelerate preprocessing with GPU
                        preferred_training_mode='auto', # Auto will automatically identify, if LGBM & Xgboost can use GPU acceleration*
                        tune_mode='accurate' # hyperparameter sets will be validated with 10-fold CV Set this to 'simple' for 1-fold CV
                        #categorical_columns=cat_columns # you can define categorical columns, otherwise e2e does this automatically
                        #date_columns=date_columns # you can also define date columns (expected is YYYY-MM-DD format)
                                                               )

"""
*
'Auto' is recommended for preferred_training_mode parameter, but with 'CPU' and 'GPU' it can also be controlled manually.
If you install Xgboost & LGBM into the same environment as GPU accelerated versions, you can set preferred_training_mode='gpu'.
This will massively improve training times and speed up SHAP feature importance for LGBM and Xgboost related tasks.
For Xgboost this should work out of the box, if installed into a RAPIDS environment.
"""
# run actual blueprint
test_class.ml_bp01_multiclass_full_processing_xgb_prob()

"""
When choosing blueprints several options are available:

Multiclass blueprints can handle binary and multiclass tasks:
- ml_bp00_train_test_binary_full_processing_log_reg_prob()
- ml_bp01_multiclass_full_processing_xgb_prob()
- ml_bp02_multiclass_full_processing_lgbm_prob()
- ml_bp03_multiclass_full_processing_sklearn_stacking_ensemble()
- ml_bp04_multiclass_full_processing_ngboost()
- ml_bp05_multiclass_full_processing_vowpal_wabbit
- ml_bp06_multiclass_full_processing_bert_transformer() # for NLP specifically
- ml_bp07_multiclass_full_processing_tabnet()
- ml_bp08_multiclass_full_processing_ridge()
- ml_bp09_multiclass_full_processing_catboost()
- ml_bp10_multiclass_full_processing_sgd()
- ml_bp11_multiclass_full_processing_quadratic_discriminant_analysis()
- ml_bp12_multiclass_full_processing_svm()
- ml_bp13_multiclass_full_processing_multinomial_nb()
- ml_bp14_multiclass_full_processing_lgbm_focal()
- ml_bp16_multiclass_full_processing_neural_network() # offers fully connected ANN & 1D CNN
- ml_special_binary_full_processing_boosting_blender()
- ml_special_multiclass_auto_model_exploration()
- ml_special_multiclass_full_processing_multimodel_max_voting()

There are regression blueprints as well (in regression module):
- ml_bp10_train_test_regression_full_processing_linear_reg()
- ml_bp11_regression_full_processing_xgboost()
- ml_bp12_regressions_full_processing_lgbm()
- ml_bp13_regression_full_processing_sklearn_stacking_ensemble()
- ml_bp14_regressions_full_processing_ngboost()
- ml_bp15_regression_full_processing_vowpal_wabbit_reg()
- ml_bp16_regressions_full_processing_bert_transformer()
- ml_bp17_regression_full_processing_tabnet_reg()
- ml_bp18_regression_full_processing_ridge_reg()
- ml_bp19_regression_full_processing_elasticnet_reg()
- ml_bp20_regression_full_processing_catboost()
- ml_bp20_regression_full_processing_sgd()
- ml_bp21_regression_full_processing_ransac()
- ml_bp22_regression_full_processing_svm()
- ml_bp23_regressions_full_processing_neural_network() # offers fully connected ANN & 1D CNN
- ml_special_regression_full_processing_multimodel_avg_blender()
- ml_special_regression_auto_model_exploration()

In the time series module we recently embedded blueprints as well:
- ml_bp100_univariate_timeseries_full_processing_auto_arima()
- ml_bp101_multivariate_timeseries_full_processing_lstm()
- ml_bp102_multivariate_timeseries_full_processing_tabnet()
- ml_bp103_multivariate_timeseries_full_processing_rnn()
- ml_bp104_univariate_timeseries_full_processing_holt_winters()

Time series blueprints use less preprocessing on default and cannot use all options like
classification and regression models. Non-time series algorithms like TabNet are different
to their regression counterpart as cross validation is replaced by time series splits and
data scaling covers the target variable as well.

In ensembles algorithms can be chosen via the class attribute:
test_class.special_blueprint_algorithms = {"ridge": True,
                                            "elasticnet": False,
                                             "xgboost": True,
                                             "ngboost": True,
                                             "lgbm": True,
                                             "tabnet": False,
                                             "vowpal_wabbit": True,
                                             "sklearn_ensemble": True,
                                             "catboost": False
                                             }

Also preprocessing steps can be selected:
test_class.blueprint_step_selection_non_nlp = {
            "automatic_type_detection_casting": True,
            "remove_duplicate_column_names": True,
            "reset_dataframe_index": True,
            "fill_infinite_values": True,
            "early_numeric_only_feature_selection": True,
            "delete_high_null_cols": True,
            "data_binning": True,
            "regex_clean_text_data": False,
            "handle_target_skewness": False,
            "datetime_converter": True,
            "pos_tagging_pca": False,  # slow with many categories
            "append_text_sentiment_score": False,
            "tfidf_vectorizer_to_pca": False,  # slow with many categories
            "tfidf_vectorizer": False,
            "rare_feature_processing": True,
            "cardinality_remover": True,
            "categorical_column_embeddings": False,
            "holistic_null_filling": True,  # slow
            "numeric_binarizer_pca": True,
            "onehot_pca": True,
            "category_encoding": True,
            "fill_nulls_static": True,
            "autoencoder_outlier_detection": True,
            "outlier_care": True,
            "delete_outliers": False,
            "remove_collinearity": True,
            "skewness_removal": True,
            "automated_feature_transformation": False,
            "random_trees_embedding": False,
            "clustering_as_a_feature_dbscan": True,
            "clustering_as_a_feature_kmeans_loop": True,
            "clustering_as_a_feature_gaussian_mixture_loop": True,
            "pca_clustering_results": True,
            "svm_outlier_detection_loop": False,
            "autotuned_clustering": False,
            "reduce_memory_footprint": False,
            "scale_data": True,
            "smote": False,
            "automated_feature_selection": True,
            "bruteforce_random_feature_selection": False,  # slow
            "autoencoder_based_oversampling": False,
            "synthetic_data_augmentation": False,
            "final_pca_dimensionality_reduction": False,
            "final_kernel_pca_dimensionality_reduction": False,
            "delete_low_variance_features": False,
            "shap_based_feature_selection": False,
            "delete_unpredictable_training_rows": False,
            "trained_tokenizer_embedding": False,
            "sort_columns_alphabetically": True,
            "use_tabular_gan": False,
        }

The bruteforce_random_feature_selection step is experimental. It showed promising results. The number of trials can be controlled.
This step is useful, if the model overfitted (which should happen rarely), because too many features with too little
feature importance have been considered.
like test_class.hyperparameter_tuning_rounds["bruteforce_random"] = 400 .

Generally the class instance is a control center and gives room for plenty of customization.
Never update the class attributes like shown below.

test_class.tabnet_settings = "batch_size": rec_batch_size,
                                "virtual_batch_size": virtual_batch_size,
                                # pred batch size?
                                "num_workers": 0,
                                "max_epochs": 1000}

test_class.hyperparameter_tuning_rounds = {
            "xgboost": 100,
            "lgbm": 500,
            "lgbm_focal": 50,
            "tabnet": 25,
            "ngboost": 25,
            "sklearn_ensemble": 10,
            "ridge": 500,
            "elasticnet": 100,
            "catboost": 25,
            "sgd": 2000,
            "svm": 50,
            "svm_regression": 50,
            "ransac": 50,
            "multinomial_nb": 100,
            "bruteforce_random": 400,
            "synthetic_data_augmentation": 100,
            "autoencoder_based_oversampling": 200,
            "final_kernel_pca_dimensionality_reduction": 50,
            "final_pca_dimensionality_reduction": 50,
            "auto_arima": 50,
            "holt_winters": 50,
        }

test_class.hyperparameter_tuning_max_runtime_secs = {
            "xgboost": 2 * 60 * 60,
            "lgbm": 2 * 60 * 60,
            "lgbm_focal": 2 * 60 * 60,
            "tabnet": 2 * 60 * 60,
            "ngboost": 2 * 60 * 60,
            "sklearn_ensemble": 2 * 60 * 60,
            "ridge": 2 * 60 * 60,
            "elasticnet": 2 * 60 * 60,
            "catboost": 2 * 60 * 60,
            "sgd": 2 * 60 * 60,
            "svm": 2 * 60 * 60,
            "svm_regression": 2 * 60 * 60,
            "ransac": 2 * 60 * 60,
            "multinomial_nb": 2 * 60 * 60,
            "bruteforce_random": 2 * 60 * 60,
            "synthetic_data_augmentation": 1 * 60 * 60,
            "autoencoder_based_oversampling": 2 * 60 * 60,
            "final_kernel_pca_dimensionality_reduction": 4 * 60 * 60,
            "final_pca_dimensionality_reduction": 2 * 60 * 60,
            "auto_arima": 2 * 60 * 60,
            "holt_winters": 2 * 60 * 60,
        }

When these parameters have to updated, please overwrite the keys individually to not break the blueprints eventually.
I.e.: test_class.hyperparameter_tuning_max_runtime_secs["xgboost"] = 12*60*60 would work fine.

Working with big data can bring all hardware to it's needs. e2eml has been tested with:
- Ryzen 5950x (16 cores CPU)
- Geforce RTX 3090 (24GB VRAM)
- 64GB RAM
e2eml has been able to process 100k rows with 200 columns approximately using these specs stable for non-blended
blueprints. Blended blueprints consume more resources as e2eml keep the trained models in memory as of now.

For data bigger than 100k rows it is possible to limit the amount of data for various preprocessing steps:
- test_class.feature_selection_sample_size = 100000 # for feature selection
- test_class.hyperparameter_tuning_sample_size = 100000 # for model hyperparameter optimization
- test_class.brute_force_selection_sample_size = 15000 # for an experimental feature selection

For binary classification a sample size of 100k datapoints is sufficient in most cases.
Hyperparameter tuning sample size can be much less,
depending on class imbalance.

For multiclass we recommend to start with small samples as algorithms like Xgboost and LGBM will
easily grow in memory consumption
with growing number of classes. LGBM focal or neural network will be good starts here.

Whenever classes are imbalanced (binary & multiclass) we recommend to use the preprocessing step
"autoencoder_based_oversampling".
"""
# After running the blueprint the pipeline is done. I can be saved with:
save_to_production(test_class, file_name='automl_instance')

# The blueprint can be loaded with
loaded_test_class = load_for_production(file_name='automl_instance')

# predict on new data (in this case our holdout) with loaded blueprint
loaded_test_class.ml_bp01_multiclass_full_processing_xgb_prob(holdout_df)

# predictions can be accessed via a class attribute
print(churn_class.predicted_classes['xgboost'])
```

## Linting and Pre-Commit

This project uses pre-commit to enforce style.

To install the pre-commit hooks, first install pre-commit into the project's
virtual environment:

```sh
pip install pre-commit
```

Then install the project hooks:

```sh
pre-commit install
```

Now, whenever you make a commit, the linting and autoformatting will
automatically run.

## Disclaimer

e2e is not designed to quickly iterate over several algorithms and suggest you
the best. It is made to deliver state-of-the-art performance as ready-to-go
blueprints. e2e-ml blueprints contain:

* preprocessing (outlier, rare feature, datetime, categorical and NLP handling)
* feature creation (binning, clustering, categorical and NLP features)
* automated feature selection
* model training (with crossfold validation)
* automated hyperparameter tuning
* model evaluation

This comes at the cost of runtime. Depending on your data we recommend strong
hardware.

## Development

This project uses [poetry](https://python-poetry.org/).

To install the project for development, run:

```sh
poetry install
```

This will install all dependencies and development dependencies into a virtual
environment.

### Adding or Removing Dependencies

To add or remove a dependency, use `poetry add <package>` or
`poetry remove <package>` respectively. Use the `--dev` flag for development
dependencies.

### Building and Publishing

To build and publish the project, run

```sh
poetry publish --build
```

### Documentation

This project comes with documentation. To build the docs, run:

```sh
cd docs
make docs
```

You may then browse the HTML docs at `docs/build/docs/index.html`.

### Pull Requests

We welcome Pull Requests! Please make a PR against the `develop` branch.

## Release History

* 4.14.0
  * Update Python version to support also 3.9
  * Updated import for Pandas' SettingWithCopyWarning warnings
* 4.12.00
  * Added fully connected NN for regression with quantile loss
  * Fixed wrong assignment in RNN model
  * Adjusted default preprocessing steps for regression tasks
  * Shuffling is disabled automatically for all time_series ml_task instances
  * LSTM & RNN default settings will automatically adjust to a more complex architecture,
  * if more than 50 features have been detected
* 4.00.50
  * Added Autoarima & Holt winters for univariate time series predictions
  * Added LSTM & RNN for uni- & multivariate time series prediction
  * Autotuned NNs, LSTM and NLP transformers got an extra setting to set how
    many models shall be created
  * All tabular NNs (except NLPs) store predicted probabilities now
    (binary classifiers will blend them when
    creation of multiple modls has ben specified)
  * Optimized preprocessing order
* 3.02.00
  * Refined GAN architectures
  * Categorical encoding can be chosen via the cat_encoder_model attribute now
  * Fixed a bug when choosing onehot encoding
  * Optimized autoencoder based oversampling for regression
  * Added Autoencoder based oversampling
  * Optimized clustering performance
* 2.50
  * Added tabular GAN (experimental)
  * Minor bug fixes
* 2.13
  * Added neural networks (ANN & soft ordered 1d-CNN) for tabular data
  * Added attribute global_random_state to set state for all instances
  * Added attribute shuffle_during_training to be able to disable shuffling
    during model training (does not apply to all models)
* 2.12
  * Added RAPIDS support for SVM regression
  * Updated Xgboost loss function for regression
  * Fixed a bug in cardinality removal
* 2.11
  * Added datasets library to dependencies
  * Calculation of feature importance can be controlled via class instance now.
    This is helpful when using TF-IDF matrices where 10-fold permutation test
    run out of memory
  * Fixed loading of BERT weights from manual path
  * DEESC parameters can be controlled via class attributes now
  * Fixed a bug with LGBM on regression tasks
  * Adjusted RAPIDS based clustering for use with RAPIDS version 21.12
  * Added RAPIDS as accelerator for feature transformation exploration
  * Performance optimization for clustering & numerical binarizer
  * Added random states to clustering & PCA implementations
  * Improved scaling
  * Stabilized TabNet for regression
* 2.10.04
  * Adjusted dependency for SHAP
  * Fixed a bug where early numeric feature selection failed due to
    the absence of numerical features
* 2.10.03
  * Adjusted dependencies for Pandas, Spacy, Optuna, Setuptools, Transformers
* 2.10.01
  * Added references & citations to Readme
  * Added is_imbalanced flag to Timewalk
  * Removed babel from dependencies & updated some of them
* 2.9.96
  * Timewalk got adjustments
  * Fixed a bug where row deletion has been incompatible with Tabnet
* 2.9.95
  * SHAP based feature selection increased to 20 folds (from 10)
  * less unnecessary print outs
* 2.9.93
  * Added SHAP based feature selection
  * Removed Xgboost from Timewalk as default due to computational and runtime costs
  * Suppress all warnings of LGBM focal during multiclass tasks
* 2.9.92
  * e2eml uses poetry
  * introduction of Github actions to check linting
  * bug fix of LGBM focal failing due to missing hyperparameter tuning specifications
  * preparation for Readthedocs implementation
* 2.9.9
  * Added Multinomial Bayes Classifier
  * Added SVM for regression
  * Refined Sklearn ensembles
* 2.9.8
  * Added Quadrant Discriminent Analysis
  * Added Support Vector machines
  * Added Ransac regressor
* 2.9.7
  * updated Plotly dependency to 5.4.0
  * Improved Xgboost for imbalanced data
* 2.9.6
  * Added TimeTravel and timewalk: TimeTravel will save the class instance after
    each preprocessing step, timewalk will automatically try different
    preprocessing steps with different algorithms to find the best combination
  * Updated dependencies to use newest versions of scikit-learn and
    category-encoders
* 2.9.0
  * bug fixes with synthetic data augmentation for regression
  * bug fix of target encoding during regression
  * enhanced hyperparameter space for autoencoder based oversampling
  * added final PCA dimensionality reduction as optional preprocessing step
* 2.8.1
  * autoencoder based oversampling will go through hyperprameter tuning first
    (for each class individually)
  * optimized TabNet performance
* 2.7.5
  * added oversampling based on variational autoencoder (experimental)
* 2.7.4
  * fixed target encoding for multiclass classification
  * improved performance on multiclass tasks
  * improved Xgboost & TabNet performance on binary classification
  * added auto-tuned clustering as a feature
* 2.6.3
  * small bugfixes
* 2.6.1
  * Hyperparameter tuning does happen on a sample of the train data from now on
    (sample size can be controlled)
  * An experimental feature has been added, which tries to find unpredictable
    training data rows to delete them from the training (this accelerates
    training, but costs a bit model performance)
  * Blueprints can be accelerated with Nvidia RAPIDS (works on clustering only f
    or now)
* 2.5.9
  * optimized loss function for TabNet
* 2.5.1
  * Optimized loss function for synthetic data augmentation
  * Adjusted library dependencies
  * Improved target encoding
* 2.3.1
  * Changed feature selection backend from Xgboost to LGBM
  * POS tagging is off on default from this version
* 2.2.9
  * bug fixes
  * added an experimental feature to optimize training data with synthetic data
  * added optional early feature selection (numeric only)
* 2.2.2
  * transformers can be loaded into Google Colab from Gdrive
* 2.1.2
  * Improved TFIDF vectorizer performance & non transformer NLP applications
  * Improved POS tagging stability
* 2.1.1
  * Completely overworked preprocessing setup (changed API). Preprocessing
    blueprints can be customized through a class attribute now
  * Completely overworked special multimodel blueprints. The paricipating
    algorithms can be customized through a class attribute now
  * Improved NULL handling & regression performance
  * Added Catboost & Elasticnet
  * Updated Readme
  * First unittests
  * Added Stochastic Gradient classifier & regressor
* 1.8.2
  * Added Ridge classifier and regression as new blueprints
* 1.8.1
  * Added another layer of feature selection
* 1.8.0
  * Transformer padding length will be max text length + 20% instead of static
    300
  * Transformers use AutoModelForSequenceClassification instead of hardcoded
    transformers now
  * Hyperparameter tuning rounds and timeout can be controlled globally via
    class attribute now
* 1.7.8
  * Instead of a global probability threshold, e2eml stores threshold for each
    tested model
  * Deprecated binary boosting blender due to lack of performance
  * Added filling of inf values
* 1.7.3
  * Improved preprocessing
  * Improved regression performance
  * Deprecated regression boosting blender and replaced my multi
    model/architecture blender
  * Transformers can optionally discard worst models, but will keep all 5 by
    default
  * e2eml should be installable on Amazon Sagemaker now
* 1.7.0
  * Added TabNet classifier and regressor with automated hyperparameter
    optimization
* 1.6.5
  * improvements of NLP transformers
* 1.5.8
  * Fixes bug around preprocessing_type='nlp'
  * replaced pickle with dill for saving and loading objects
* 1.5.3
  * Added transformer blueprints for NLP classification and regression
  * renamed Vowpal Wabbit blueprint to fit into blueprint naming convention
  * Created "extras" options for library installation: 'rapids' installs extras,
    so e2eml can be installed into into a rapids environment while 'jupyter'
    adds jupyter core and ipython. 'full' installs all of them.
* 1.3.9
  * Fixed issue with automated GPU-acceleration detection and flagging
  * Fixed avg regression blueprint where eval function tried to call
    classification evaluation
  * Moved POS tagging + PCA step into non-NLP pipeline as it showed good results
    in general
  * improved NLP part (more and better feature engineering and preprocessing) of
    blueprints for better performance
  * Added Vowpal Wabbit for classification and regression and replaced stacking
    ensemble in automated model exploration by Vowpal Wabbit as well
  * Set random_state for train_test splits for consistency
  * Fixed sklearn dependency to 0.22.0 due to six import error
* 1.0.1
  * Optimized package requirements
  * Pinned LGBM requirement to version 3.1.0 due to the bug "LightGBMError: bin
    size 257 cannot run on GPU #3339"
* 0.9.9
  * Enabled tune_mode parameter during class instantiation.
  * Updated docstings across all functions and changed model defaults.
  * Multiple bug fixes (LGBM regression accurate mode, label encoding and
    permutation tests).
  * Enhanced user information & better ROC_AUC display
  * Added automated GPU detection for LGBM and Xgboost.
  * Added functions to save and load blueprints
  * architectural changes (preprocessing organized in blueprints as well)
* 0.9.4
  * First release with classification and regression blueprints. (not available
    anymore)

## References

* Focal loss
  * [Focal loss for LGBM](https://maxhalford.github.io/blog/lightgbm-focal-loss/#first-order-derivative)
  * [Focal loss for LGBM multiclass](https://towardsdatascience.com/multi-class-classification-using-focal-loss-and-lightgbm-a6a6dec28872)
* Autoencoder
  * [Variational Autoencoder for imbalanced data](https://github.com/lschmiddey/Autoencoder/blob/master/VAE_for_imbalanced_data.ipynb)
* Target Encoding
  * [Target encoding for multiclass](https://towardsdatascience.com/target-encoding-for-multi-class-classification-c9a7bcb1a53)
* Pytorch-TabNet
  * [Arik, S. O., & Pfister, T. (2019). TabNet: Attentive Interpretable Tabular Learning. arXiv preprint arXiv:1908.07442.](https://arxiv.org/pdf/1908.07442.pdf)
  * [Implementing TabNet in Pytorch](https://towardsdatascience.com/implementing-tabnet-in-pytorch-fc977c383279)
* Ngboost
  * [NGBoost: Natural Gradient Boosting for Probabilistic Prediction, arXiv:1910.03225](https://arxiv.org/abs/1910.03225)
* Vowpal Wabbit
  * [Vowpal Wabbit Research overview](https://vowpalwabbit.org/research.html)

## Meta

Creator: Thomas Meißner – [LinkedIn](https://www.linkedin.com/in/thomas-mei%C3%9Fner-m-a-3808b346)

Consultant: Gabriel Stephen Alexander – [Github](https://github.com/bitsofsteve)

Special thanks to: Alex McKenzie - [LinkedIn](https://de.linkedin.com/in/alex-mckenzie)

[e2eml Github repository](https://github.com/ThomasMeissnerDS/e2e_ml)


%prep
%autosetup -n e2eml-4.14.20

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-e2eml -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 4.14.20-1
- Package Spec generated