summaryrefslogtreecommitdiff
path: root/python-e3nn.spec
blob: 822edda8cd66a71d24b46be81da2eb5cfbffc554 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
%global _empty_manifest_terminate_build 0
Name:		python-e3nn
Version:	0.5.1
Release:	1
Summary:	Equivariant convolutional neural networks for the group E(3) of 3 dimensional rotations, translations, and mirrors.
License:	MIT
URL:		https://e3nn.org
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/a1/e5/fd5a05004fa4367511bc05b573773fe59031e20d7eb1a21743fda3eb5db5/e3nn-0.5.1.tar.gz
BuildArch:	noarch

Requires:	python3-sympy
Requires:	python3-scipy
Requires:	python3-torch
Requires:	python3-opt-einsum-fx
Requires:	python3-pytest
Requires:	python3-pre-commit

%description
# Euclidean neural networks
[![Coverage Status](https://coveralls.io/repos/github/e3nn/e3nn/badge.svg?branch=main)](https://coveralls.io/github/e3nn/e3nn?branch=main)
[![DOI](https://zenodo.org/badge/237431920.svg)](https://zenodo.org/badge/latestdoi/237431920)

**[Documentation](https://docs.e3nn.org)** | **[Code](https://github.com/e3nn/e3nn)** | **[ChangeLog](https://github.com/e3nn/e3nn/blob/main/ChangeLog.md)** | **[Colab](https://colab.research.google.com/drive/1Gps7mMOmzLe3Rt_b012xsz4UyuexTKAf?usp=sharing)**

The aim of this library is to help the development of [E(3)](https://en.wikipedia.org/wiki/Euclidean_group) equivariant neural networks.
It contains fundamental mathematical operations such as [tensor products](https://docs.e3nn.org/en/stable/api/o3/o3_tp.html) and [spherical harmonics](https://docs.e3nn.org/en/stable/api/o3/o3_sh.html).

![](https://user-images.githubusercontent.com/333780/79220728-dbe82c00-7e54-11ea-82c7-b3acbd9b2246.gif)

## Installation

**Important:** install pytorch and only then run the command

```
pip install --upgrade pip
pip install --upgrade e3nn
```

For details and optional dependencies, see [INSTALL.md](https://github.com/e3nn/e3nn/blob/main/INSTALL.md)

### Breaking changes
e3nn is under development.
It is recommanded to install using pip. The main branch is considered as unstable.
The second version number is incremented every time a breaking change is made to the code.
```
0.(increment when backwards incompatible release).(increment for backwards compatible release)
```

## Help
We are happy to help! The best way to get help on `e3nn` is to submit a [Question](https://github.com/e3nn/e3nn/issues/new?assignees=&labels=question&template=question.md&title=%E2%9D%93+%5BQUESTION%5D) or [Bug Report](https://github.com/e3nn/e3nn/issues/new?assignees=&labels=bug&template=bug-report.md&title=%F0%9F%90%9B+%5BBUG%5D).

## Want to get involved? Great!
If you want to get involved in and contribute to the development, improvement, and application of `e3nn`, introduce yourself in the [discussions](https://github.com/e3nn/e3nn/discussions/new).

## Code of conduct
Our community abides by the [Contributor Covenant Code of Conduct](https://github.com/e3nn/e3nn/blob/main/code_of_conduct.md).

## Citing
```
@misc{e3nn_paper,
    doi = {10.48550/ARXIV.2207.09453},
    url = {https://arxiv.org/abs/2207.09453},
    author = {Geiger, Mario and Smidt, Tess},
    keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Neural and Evolutionary Computing (cs.NE), FOS: Computer and information sciences, FOS: Computer and information sciences}, 
    title = {e3nn: Euclidean Neural Networks},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}

@software{e3nn,
  author       = {Mario Geiger and
                  Tess Smidt and
                  Alby M. and
                  Benjamin Kurt Miller and
                  Wouter Boomsma and
                  Bradley Dice and
                  Kostiantyn Lapchevskyi and
                  Maurice Weiler and
                  Michał Tyszkiewicz and
                  Simon Batzner and
                  Dylan Madisetti and
                  Martin Uhrin and
                  Jes Frellsen and
                  Nuri Jung and
                  Sophia Sanborn and
                  Mingjian Wen and
                  Josh Rackers and
                  Marcel Rød and
                  Michael Bailey},
  title        = {Euclidean neural networks: e3nn},
  month        = apr,
  year         = 2022,
  publisher    = {Zenodo},
  version      = {0.5.0},
  doi          = {10.5281/zenodo.6459381},
  url          = {https://doi.org/10.5281/zenodo.6459381}
}
```

### Copyright

Euclidean neural networks (e3nn) Copyright (c) 2020, The Regents of the
University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from the U.S. Dept. of Energy),
Ecole Polytechnique Federale de Lausanne (EPFL), Free University of Berlin
and Kostiantyn Lapchevskyi. All rights reserved.

If you have questions about your rights to use or distribute this software,
please contact Berkeley Lab's Intellectual Property Office at
IPO@lbl.gov.

NOTICE.  This Software was developed under funding from the U.S. Department
of Energy and the U.S. Government consequently retains certain rights.  As
such, the U.S. Government has been granted for itself and others acting on
its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the
Software to reproduce, distribute copies to the public, prepare derivative
works, and perform publicly and display publicly, and to permit others to do so.




%package -n python3-e3nn
Summary:	Equivariant convolutional neural networks for the group E(3) of 3 dimensional rotations, translations, and mirrors.
Provides:	python-e3nn
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-e3nn
# Euclidean neural networks
[![Coverage Status](https://coveralls.io/repos/github/e3nn/e3nn/badge.svg?branch=main)](https://coveralls.io/github/e3nn/e3nn?branch=main)
[![DOI](https://zenodo.org/badge/237431920.svg)](https://zenodo.org/badge/latestdoi/237431920)

**[Documentation](https://docs.e3nn.org)** | **[Code](https://github.com/e3nn/e3nn)** | **[ChangeLog](https://github.com/e3nn/e3nn/blob/main/ChangeLog.md)** | **[Colab](https://colab.research.google.com/drive/1Gps7mMOmzLe3Rt_b012xsz4UyuexTKAf?usp=sharing)**

The aim of this library is to help the development of [E(3)](https://en.wikipedia.org/wiki/Euclidean_group) equivariant neural networks.
It contains fundamental mathematical operations such as [tensor products](https://docs.e3nn.org/en/stable/api/o3/o3_tp.html) and [spherical harmonics](https://docs.e3nn.org/en/stable/api/o3/o3_sh.html).

![](https://user-images.githubusercontent.com/333780/79220728-dbe82c00-7e54-11ea-82c7-b3acbd9b2246.gif)

## Installation

**Important:** install pytorch and only then run the command

```
pip install --upgrade pip
pip install --upgrade e3nn
```

For details and optional dependencies, see [INSTALL.md](https://github.com/e3nn/e3nn/blob/main/INSTALL.md)

### Breaking changes
e3nn is under development.
It is recommanded to install using pip. The main branch is considered as unstable.
The second version number is incremented every time a breaking change is made to the code.
```
0.(increment when backwards incompatible release).(increment for backwards compatible release)
```

## Help
We are happy to help! The best way to get help on `e3nn` is to submit a [Question](https://github.com/e3nn/e3nn/issues/new?assignees=&labels=question&template=question.md&title=%E2%9D%93+%5BQUESTION%5D) or [Bug Report](https://github.com/e3nn/e3nn/issues/new?assignees=&labels=bug&template=bug-report.md&title=%F0%9F%90%9B+%5BBUG%5D).

## Want to get involved? Great!
If you want to get involved in and contribute to the development, improvement, and application of `e3nn`, introduce yourself in the [discussions](https://github.com/e3nn/e3nn/discussions/new).

## Code of conduct
Our community abides by the [Contributor Covenant Code of Conduct](https://github.com/e3nn/e3nn/blob/main/code_of_conduct.md).

## Citing
```
@misc{e3nn_paper,
    doi = {10.48550/ARXIV.2207.09453},
    url = {https://arxiv.org/abs/2207.09453},
    author = {Geiger, Mario and Smidt, Tess},
    keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Neural and Evolutionary Computing (cs.NE), FOS: Computer and information sciences, FOS: Computer and information sciences}, 
    title = {e3nn: Euclidean Neural Networks},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}

@software{e3nn,
  author       = {Mario Geiger and
                  Tess Smidt and
                  Alby M. and
                  Benjamin Kurt Miller and
                  Wouter Boomsma and
                  Bradley Dice and
                  Kostiantyn Lapchevskyi and
                  Maurice Weiler and
                  Michał Tyszkiewicz and
                  Simon Batzner and
                  Dylan Madisetti and
                  Martin Uhrin and
                  Jes Frellsen and
                  Nuri Jung and
                  Sophia Sanborn and
                  Mingjian Wen and
                  Josh Rackers and
                  Marcel Rød and
                  Michael Bailey},
  title        = {Euclidean neural networks: e3nn},
  month        = apr,
  year         = 2022,
  publisher    = {Zenodo},
  version      = {0.5.0},
  doi          = {10.5281/zenodo.6459381},
  url          = {https://doi.org/10.5281/zenodo.6459381}
}
```

### Copyright

Euclidean neural networks (e3nn) Copyright (c) 2020, The Regents of the
University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from the U.S. Dept. of Energy),
Ecole Polytechnique Federale de Lausanne (EPFL), Free University of Berlin
and Kostiantyn Lapchevskyi. All rights reserved.

If you have questions about your rights to use or distribute this software,
please contact Berkeley Lab's Intellectual Property Office at
IPO@lbl.gov.

NOTICE.  This Software was developed under funding from the U.S. Department
of Energy and the U.S. Government consequently retains certain rights.  As
such, the U.S. Government has been granted for itself and others acting on
its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the
Software to reproduce, distribute copies to the public, prepare derivative
works, and perform publicly and display publicly, and to permit others to do so.




%package help
Summary:	Development documents and examples for e3nn
Provides:	python3-e3nn-doc
%description help
# Euclidean neural networks
[![Coverage Status](https://coveralls.io/repos/github/e3nn/e3nn/badge.svg?branch=main)](https://coveralls.io/github/e3nn/e3nn?branch=main)
[![DOI](https://zenodo.org/badge/237431920.svg)](https://zenodo.org/badge/latestdoi/237431920)

**[Documentation](https://docs.e3nn.org)** | **[Code](https://github.com/e3nn/e3nn)** | **[ChangeLog](https://github.com/e3nn/e3nn/blob/main/ChangeLog.md)** | **[Colab](https://colab.research.google.com/drive/1Gps7mMOmzLe3Rt_b012xsz4UyuexTKAf?usp=sharing)**

The aim of this library is to help the development of [E(3)](https://en.wikipedia.org/wiki/Euclidean_group) equivariant neural networks.
It contains fundamental mathematical operations such as [tensor products](https://docs.e3nn.org/en/stable/api/o3/o3_tp.html) and [spherical harmonics](https://docs.e3nn.org/en/stable/api/o3/o3_sh.html).

![](https://user-images.githubusercontent.com/333780/79220728-dbe82c00-7e54-11ea-82c7-b3acbd9b2246.gif)

## Installation

**Important:** install pytorch and only then run the command

```
pip install --upgrade pip
pip install --upgrade e3nn
```

For details and optional dependencies, see [INSTALL.md](https://github.com/e3nn/e3nn/blob/main/INSTALL.md)

### Breaking changes
e3nn is under development.
It is recommanded to install using pip. The main branch is considered as unstable.
The second version number is incremented every time a breaking change is made to the code.
```
0.(increment when backwards incompatible release).(increment for backwards compatible release)
```

## Help
We are happy to help! The best way to get help on `e3nn` is to submit a [Question](https://github.com/e3nn/e3nn/issues/new?assignees=&labels=question&template=question.md&title=%E2%9D%93+%5BQUESTION%5D) or [Bug Report](https://github.com/e3nn/e3nn/issues/new?assignees=&labels=bug&template=bug-report.md&title=%F0%9F%90%9B+%5BBUG%5D).

## Want to get involved? Great!
If you want to get involved in and contribute to the development, improvement, and application of `e3nn`, introduce yourself in the [discussions](https://github.com/e3nn/e3nn/discussions/new).

## Code of conduct
Our community abides by the [Contributor Covenant Code of Conduct](https://github.com/e3nn/e3nn/blob/main/code_of_conduct.md).

## Citing
```
@misc{e3nn_paper,
    doi = {10.48550/ARXIV.2207.09453},
    url = {https://arxiv.org/abs/2207.09453},
    author = {Geiger, Mario and Smidt, Tess},
    keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Neural and Evolutionary Computing (cs.NE), FOS: Computer and information sciences, FOS: Computer and information sciences}, 
    title = {e3nn: Euclidean Neural Networks},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}

@software{e3nn,
  author       = {Mario Geiger and
                  Tess Smidt and
                  Alby M. and
                  Benjamin Kurt Miller and
                  Wouter Boomsma and
                  Bradley Dice and
                  Kostiantyn Lapchevskyi and
                  Maurice Weiler and
                  Michał Tyszkiewicz and
                  Simon Batzner and
                  Dylan Madisetti and
                  Martin Uhrin and
                  Jes Frellsen and
                  Nuri Jung and
                  Sophia Sanborn and
                  Mingjian Wen and
                  Josh Rackers and
                  Marcel Rød and
                  Michael Bailey},
  title        = {Euclidean neural networks: e3nn},
  month        = apr,
  year         = 2022,
  publisher    = {Zenodo},
  version      = {0.5.0},
  doi          = {10.5281/zenodo.6459381},
  url          = {https://doi.org/10.5281/zenodo.6459381}
}
```

### Copyright

Euclidean neural networks (e3nn) Copyright (c) 2020, The Regents of the
University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from the U.S. Dept. of Energy),
Ecole Polytechnique Federale de Lausanne (EPFL), Free University of Berlin
and Kostiantyn Lapchevskyi. All rights reserved.

If you have questions about your rights to use or distribute this software,
please contact Berkeley Lab's Intellectual Property Office at
IPO@lbl.gov.

NOTICE.  This Software was developed under funding from the U.S. Department
of Energy and the U.S. Government consequently retains certain rights.  As
such, the U.S. Government has been granted for itself and others acting on
its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the
Software to reproduce, distribute copies to the public, prepare derivative
works, and perform publicly and display publicly, and to permit others to do so.




%prep
%autosetup -n e3nn-0.5.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-e3nn -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.1-1
- Package Spec generated