summaryrefslogtreecommitdiff
path: root/python-easy-cache.spec
blob: 0eb7ec6f79ac4ffd69242c1ac030da54272d218d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
%global _empty_manifest_terminate_build 0
Name:		python-easy-cache
Version:	2.0.0
Release:	1
Summary:	Useful cache decorators for methods and properties
License:	MIT
URL:		https://github.com/Bahus/easy_cache
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/43/68/01241f304eeab861aa014db0a900143f14e374596f1b21b30664723b8968/easy-cache-2.0.0.tar.gz
BuildArch:	noarch

Requires:	python3-pytest
Requires:	python3-Django
Requires:	python3-django-redis
Requires:	python3-memory-profiler
Requires:	python3-mock
Requires:	python3-psutil
Requires:	python3-memcached
Requires:	python3-pymemcache
Requires:	python3-redis
Requires:	python3-pylibmc
Requires:	python3-tox-pyenv

%description
# Easy caching decorators

[![Build Status](https://travis-ci.org/Bahus/easy_cache.svg?branch=master)](https://travis-ci.org/Bahus/easy_cache)

This package is intended to simplify caching and invalidation process in python-based (primarily) web applications. It's possible to cache execution results of functions; **instance**, **class** and **static** methods; properties. Cache keys may be constructed in various different ways and may depend on any number of parameters.

The package supports tag-based cache invalidation and better works with Django, however any other frameworks can be used – see examples below.

The main idea of this package: you don't need to touch any existing function code to cache its execution results.

## Requirements

Library was tested in the following environments:

* Python 3.7, 3.8, 3.9, 3.10
* Django >=2.0.0

Feel free to try it in yours, but it's not guaranteed it will work. Submit an issue if you think it should.

## Installation

```shell
pip install easy_cache
```

## Introduction

### Different ways to cache something

Imagine you have a time consuming function and you need to cache an execution results, the classic way to achieve this is the next one:

```python
# classic way
from django.core.cache import cache

def time_consuming_operation(n):
    """Calculate sum of number from 1 to provided n"""
    cache_key = 'time_consuming_operation_{}'.format(n)
    result = cache.get(cache_key, None)

    if result is None:
        # not found in cache
        result = sum(range(n + 1))
        # cache result for one hour
        cache.set(cache_key, result, 3600)

    return result

def invalidate_cache(n):
    cache.delete('time_consuming_operation_{}'.format(n))
```

Well, we had to add annoying boilerplate code to achieve this.
Now let's take a look how `easy_cache` can avoid the problem and simplify the code:

```python
# easy way
from easy_cache import ecached

@ecached('time_consuming_operation_{n}', 3600)
def time_consuming_operation(n):
    return sum(range(n + 1))

def invalidate_cache(n):
    time_consuming_operation.invalidate_cache_by_key(n)
```

As we can see the function code left clear.
Heart of the package is two decorators with the similar parameters:

### ecached

Should be used to decorate any callable and cache returned result.

Parameters:

* `cache_key` – cache key generator, default value is `None` so the key will be composed automatically based on a function name, namespace and passed parameters. Also the following types are supported:
  * **string** – may contain [Python advanced string formatting syntax](https://docs.python.org/2/library/string.html#formatstrings), a given value will be formatted with a dict of parameters passed to decorated function, see examples below.
  * **sequence of strings** – each string must be function parameter name.
  * **callable** – is used to generate cache key, decorated function parameters will be passed to this callable and returned value will be used as a cache key. Also one additional signature is available: `callable(meta)`, where `meta` is a dict-like object with some additional attributes – see below.
* `timeout` – value will be cached with provided timeout, basically it should be number of seconds, however it depends on cache backend type. Default value is `DEFAULT_VALUE` – internal constant means that actually no value is provided to cache backend and thus backend should decide what timeout to use. Callable is also supported.
* `tags` – sequence of strings or callable. Should provide or return list of tags added to cached value so cache may be invalidated later with any tag name. Tag may support advanced string formatting syntax. See `cache_key` docs and examples for more details.
* `prefix` – this parameter works both: as regular tag and also as cache key prefix, as usual advanced string formatting and callable are supported here.
* `cache_alias` – cache backend alias name, it can also be [Django cache backend alias  name](https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-CACHES).
* `cache_instance` – cache backend instance may be provided directly via this parameter.

### ecached_property

 Should be used to create so-called cached properties, has signature exactly the same as for `ecached`.

## Simple examples

Code examples is the best way to show the power of this package.

### Decorators can be simply used with default parameters only

```python
from easy_cache import ecached, create_cache_key

# default parameters
# cache key will be generated automatically:
#
# <__module__>.<__class__>.<function name> + function parameters converted to strings,
#
# so be careful when using complex objects, it's
# better to write custom cache key generator in such cases.
#
# timeout will be default for specified cache backend
# "default" cache backend will be used if you use Django
@ecached()
def time_consuming_operation(*args, **kwargs):
    pass

# simple static cache key and cache timeout 100 seconds
@ecached('time_consuming_operation', 100)
def time_consuming_operation():
    pass

# cache key with advanced string formatting syntax
@ecached('my_key:{b}:{d}:{c}')
def time_consuming_operation(a, b, c=100, d='foo'):
    pass

# or
@ecached('key:{kwargs[param1]}:{kwargs[param2]}:{args[0]}')
def time_consuming_operation(*args, **kwargs):
    pass

# use specific cache alias, see "caches framework" below
from functools import partial

memcached = partial(ecached, cache_alias='memcached')

# equivalent to cache_key='{a}:{b}'
@memcached(['a', 'b'], timeout=600)
def time_consuming_operation(a, b, c='default'):
    pass
```

### Using custom cache key generators

```python
# working with parameters provided to cached function
# cache key generator must have the same signature as decorated function
from easy_cache import create_cache_key

def custom_cache_key(self, a, b, c, d):
    return create_cache_key(self.id, a, d)

# working with `meta` object
def custom_cache_key_meta(meta):
    return '{}:{}:{}'.format(meta['self'].id, meta['a'], meta['d'])

# or equivalent
from easy_cache import meta_accepted

@meta_accepted
def custom_cache_key_meta(parameter_with_any_name):
    meta = parameter_with_any_name
    return '{}:{}:{}'.format(meta['self'].id, meta['a'], meta['d'])


class A(object):
    id = 1

    @ecached(custom_cache_key)
    def time_consuming_operation(self, a, b, c=10, d=20):
        ...

    @ecached(custom_cache_key_meta)
    def time_consuming_operation(self, a, b, c=10, d=20):
        ...
```

### How to cache `staticmethod` and `classmethod` correctly

```python
# ecached decorator always comes topmost
class B(object):

    # cache only for each different year
    @ecached(lambda start_date: 'get_list:{}'.format(start_date.year))
    @staticmethod
    def get_list_by_date(start_date):
        ...

    CONST = 'abc'

    @ecached('info_cache:{cls.CONST}', 3600, cache_alias='redis_cache')
    @classmethod
    def get_info(cls):
        ...
```

### MetaCallable object description

Meta object has the following parameters:

* `args` – tuple with positional arguments provided to decorated function
* `kwargs` – dictionary with keyword arguments provided to decorated function
* `returned_value` – value returned from decorated function, available only when meta object is handled in `tags` or `prefix` generators. You have to check `has_returned_value` property before using this parameter:

 ```python
 def generate_cache_key(meta):
     if meta.has_returned_value:
         # ... do something with meta.returned_value ...
 ```

* `call_args` - dictionary with all positional and keyword arguments provided
 to decorated function, you may also access them via `__getitem__` dict interface, e. g. `meta['param1']`.
* `function` - decorated callable
* `scope` - object to which decorated callable is attached, `None` otherwise. Usually it's an instance or a class.

### Tags invalidation, refresh and cached properties

Tags-based cache invalidation allows you to invalidate several cache keys at once.

Imagine you created a web-based book store and your users can mark a book as liked, so you need to maintain a list of liked books for every user but, an information about a book may contain a lot of different data, e.g. authors names, rating, availability in stock, some data from external services and so on.

Some of this information can be calculated on runtime only so you decided to cache the list of liked books.

But what if a book title was updated and we have to find all cache keys where this book is stored and invalidate them. Such task may be pretty complex to complete, however if you tagged all the necessary cache keys with a specific tag you will just need to invalidate the tag only and related cache keys will be invalidated "automatically".

Here are more complex examples introducing Django models and effective tags usage.
Check code comments and doc-strings for detailed description.

```python
from django.db import models
from easy_cache import ecached, ecached_property, create_cache_key


class Book(models.Model):
    title = models.CharField(max_length=250)

    def __unicode__(self):
        return self.title


class User(models.Model):
    name = models.CharField(max_length=100)
    state = models.CharField(
        max_length=15,
        choices=(('active', 'active'), ('deleted', 'deleted')),
    )
    friends = models.ManyToManyField('self', symmetrical=True)
    favorite_books = models.ManyToManyField('Book')

    def __unicode__(self):
        return self.name

    @ecached('users_by_state:{state}', 60, tags=['users_by_states'])
    @classmethod
    def get_users_by_state(cls, state):
        """
        Caches user list by provided state parameter: there will be separate
        cached value for every different state parameter, so we are having 2 different
        cache keys:

        users_by_state:active – cached list of active users
        users_by_state:deleted – cached list of deleted users

        Note that `ecached` decorator always comes topmost.

        To invalidate concrete cached state call the following method
        with the required `state`, e.g.:
        >>> User.get_users_by_state.invalidate_cache_by_key('active')
        ... removes `users_by_state:active` cache key
        or
        >>> User.get_users_by_state.invalidate_cache_by_key(state='deleted')
        ... removes `users_by_state:deleted` cache key

        If you'd like to invalidate all caches for all states call:
        >>> User.get_users_by_state.invalidate_cache_by_tags('users_by_states')
        ... removes both keys, since `users_by_states` tag attached to all of them,

        `invalidate_cache_by_tags` supports both string and list parameter types:
        >>> invalidate_cache_by_tags(['tag1', 'tag2', 'tag3'])

        To refresh concrete cached state call the following method
        with required `state`, e.g:
        >>> User.get_users_by_state.refresh_cache('active')
        ... calls `get_users_by_state('active')` and saves returned value to cache
        or
        >>> User.get_users_by_state.refresh_cache(state='deleted')

        """
        return list(cls.objects.filter(state=state))

    @ecached_property('user_friends_count:{self.id}', timeout=3600)
    def friends_count(self):
        """
        Caches friends count of each user for 1 hour.

        To access cache invalidation functions for a property you
        have to use class object instead of instance.

        Call the following method, to invalidate cache:
        >>> User.friends_count.invalidate_cache_by_key(user)
        ... removes cache key `user_friends_count:{user.id}`
        or
        >>> type(self).friends_count.invalidate_cache_by_key(user)
        or
        >>> self.__class__.friends_count.invalidate_cache_by_key(user)

        Where `user` is desired User instance to invalidate friends count for.

        Call the following method, to refresh cached data:
        >>> User.friends_count.refresh_cache(user)
        ... Updates `user.friends_count` in a cache.
        or
        >>> type(self).friends_count.refresh_cache(user)
        or
        >>> self.__class__.friends_count.refresh_cache(user)
        """
        return self.friends.count()

    @staticmethod
    def get_books_tags(meta):
        """
        Add one tag for every book in list of favorite books.
        So we will add a list of tags to cached favorite books list.
        """
        if not meta.has_returned_value:
            return []

        favorite_books = meta.returned_value
        # yes, it may occupy a lot of cache keys
        return [create_cache_key('book', book.pk) for book in favorite_books]

    @ecached('user_favorite_books:{self.id}', 600, get_books_tags)
    def get_favorite_books(self):
        """
        Caches list of related books by user id. So in code you will use:

        >>> favorite_books = request.user.get_favorite_books() # cached for user

        You may want to invalidate this cache in two cases:

        1. User added new book to favorites:

        >>> User.get_favorite_books.invalidate_cache_by_key(user)
        or
        >>> User.get_favorite_books.invalidate_cache_by_key(self=user)
        or
        >>> from easy_cache import invalidate_cache_key, create_cache_key
        >>> invalidate_cache_key(create_cache_key('user_favorite_books', user.id))
        or
        >>> invalidate_cache_key('user_favorite_books:{}'.format(user.id))

        2. Some information about favorite book was changed, e.g. its title:
        >>> from easy_cache import invalidate_cache_tags, create_tag_cache_key
        >>> tag_cache_key = create_tag_cache_key('book', changed_book_id)
        >>> User.get_favorite_books.invalidate_cache_by_tags(tag_cache_key)
        or
        >>> invalidate_cache_tags(tag_cache_key)

        To refresh cached values use the following patterns:
        >>> User.get_favorite_books.refresh_cache(user)
        or
        >>> User.get_favorite_books.refresh_cache(self=user)
        """
        return self.favorite_books.filter(user=self)
```

## Prefix usage

Commonly `prefix` is used to invalidate all cache-keys in one namespace, e. g.:

```python
from functools import partial

class Shop(models.Model):
    single_shop_cache = partial(ecached, prefix='shop:{self.id}')

    @single_shop_cache('goods_list')
    def get_all_goods_list(self):
        return [...]

    @single_shop_cache('prices_list')
    def get_all_prices_list(self):
        return [...]

# if you have `shop` object you are able to use the following invalidation
# strategies:

# Invalidate cached list of goods for concrete shop
Shop.get_all_goods_list.invalidate_cache_by_key(shop)

# Refresh cached list of goods for concrete shop
Shop.get_all_goods_list.refresh_cache(shop)

# Invalidate cached list of prices for concrete shop
Shop.get_all_prices_list.invalidate_cache_by_key(shop)

# Refresh cached list of prices for concrete shop
Shop.get_all_prices_list.refresh_cache(shop)

# Invalidate all cached items for concrete shop
Shop.get_all_goods_list.invalidate_cache_by_prefix(shop)
# or
Shop.get_all_prices_list.invalidate_cache_by_prefix(shop)
# or
from easy_cache import invalidate_cache_prefix
invalidate_cache_prefix('shop:{self.id}'.format(self=shop))
```

## Invalidation summary

There are two ways to invalidate cache objects: use invalidation methods bound to decorated function and separate functions-invalidators.

```python
<decorated>.invalidate_cache_by_key(*args, **kwargs)
<decorated>.invalidate_cache_by_tags(tags=(), *args, **kwargs)
<decorated>.invalidate_cache_by_prefix(*args, **kwargs)

# <decorated> should be used with a class instance if it is used in a class namespace:
class A:
    id = 1
    
    @ecached()
    def method(self):
        pass

    @ecached_property()
    def obj_property(self):
        pass
        
    @ecached_property('{self.id}:hello')
    def world(self):
        return '<timeconsuming>'

A.method.invalidate_cache_by_key()
# or
A().method.invalidate_cache_by_key()
# only one variant is possible for a properties
A.obj_property.invalidate_cache_by_key()
# and
item = A()
A.world.invalidate_cache_by_key(item)

# and
from easy_cache import (
    invalidate_cache_key,
    invalidate_cache_tags,
    invalidate_cache_prefix,
    create_cache_key,
)

# Note that `cache_instance` and `cache_alias` may be passed
# to the following invalidators
invalidate_cache_key(cache_key)
invalidate_cache_tags(tags)
invalidate_cache_prefix(prefix)
```

Here `tags` can be a string (single tag) or a list of tags. Bound methods should be provided with parameters if they are used in cache key/tag/prefix:

```python
@ecached('key:{a}:value:{c}', tags=['tag:{a}'], prefix='pre:{b}', cache_alias='memcached')
def time_consuming_operation(a, b, c=100):
    pass

time_consuming_operation.invalidate_cache_by_key(a=1, c=11)
time_consuming_operation.invalidate_cache_by_tags(a=10)
time_consuming_operation.invalidate_cache_by_prefix(b=2)

# or using `create_cache_key` helper
invalidate_cache_key(
    create_cache_key('key', 1, 'value', 11), cache_alias='memcached'
)
invalidate_cache_tags(create_cache_key('tag', 10), cache_alias='memcached')
invalidate_cache_prefix('pre:{}'.format(2), cache_alias='memcached')
```

## Refresh summary

There is one way to refresh cache objects: use refresh methods bound to decorated function.

```python
<decorated>.refresh_cache(*args, **kwargs)

# <decorated> should be used with class instance if it is used in class namespace:
class A:
    @ecached()
    def method(self):
        pass

    @ecached_property()
    def obj_property(self):
        pass

A.method.refresh_cache()
A.obj_property.refresh_cache()
```

## Internal caches framework

Be aware: internal cache framework instance is single threaded, so if you add new cache instance in a one thread it won't appear in another.

Easy-cache uses build-in Django cache framework by default, so you can choose what cache storage to use on every decorated function, e.g.:

```python
# Django settings
CACHES={
    'local_memory': {
        'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
        'LOCATION': 'locmem',
        'KEY_PREFIX': 'custom_prefix',
    },
    'memcached': {
        'BACKEND': 'django.core.cache.backends.memcached.PyMemcacheCache',
        'LOCATION': '127.0.0.1:11211',
        'KEY_PREFIX': 'memcached',
    }
}

# then in somewhere code
@ecached(..., cache_alias='memcached')
# or
@ecached(..., cache_alias='local_memory')
# or even
from django.core.cache import caches
another_cache = caches['another_cache']
@ecached(..., cache_instance=another_cache)
```

However if you don't use Django, there is cache framework built into easy-cache package, it can be used in the same fashion as Django caches:

```python
# Custom cache instance class must implement AbstractCacheInstance interface:
from easy_cache.abc import AbstractCacheInstance
from easy_cache.core import DEFAULT_TIMEOUT, NOT_FOUND

class CustomCache(AbstractCacheInstance):

    def get(self, key, default=NOT_FOUND):
        ...

    def get_many(self, keys):
        ...

    def set(self, key, value, timeout=DEFAULT_TIMEOUT):
        ...

    def set_many(self, data_dict, timeout=DEFAULT_TIMEOUT):
        ...

    def delete(self, key):
        ...

from easy_cache import caches

custom_cache = CustomCache()
caches['new_cache'] = custom_cache
caches.set_default(CustomCacheDefault())

# and then
@ecached(..., cache_alias='new_cache')
# or
@ecached(..., cache_instance=custom_cache)
# will use `default` alias
@ecached(...)
```

There is already implemented redis cache instance class, based on [redis-py client](https://pypi.python.org/pypi/redis):

```python
from redis import StrictRedis
from easy_cache.contrib.redis_cache import RedisCacheInstance
from easy_cache import caches

redis_cache = RedisCacheInstance(StrictRedis(host='...', port='...'))
caches.set_default(redis_cache)

# will use `default` alias
@ecached(...)
```

## Dynamic timeout example

You may need to provide cache timeout dynamically depending on function parameters:

```python
def dynamic_timeout(group):
    if group == 'admins':
        timeout = 10
    else:
        timeout = 100
    return timeout

@ecached('key:{group}', timeout=dynamic_timeout)
def get_users_by_group(group):
    ...
```

## Development and contribution

Live instances of Redis and Memcached are required for few tests to pass, so it's recommended to use docker/docker-compose to setup the necessary environment:

```shell
docker-compose up -d

# to enable debug logs
# export EASY_CACHE_DEBUG="yes"

# install package locally
pip install -e .[tests]

# run tests with pytest or tox
pytest
tox
```

## Performance and overhead

Benchmarking may be executed with `tox` command and it shows that decorators give about 4% of overhead in worst case and about 1-2% overhead on the average.

If you don't use tags or prefix you will get one cache request for `get` and one request for `set` if result not found in cache, otherwise two consecutive requests will be made: `get` and `get_many` to receive actual value from cache and validate its tags (prefix). Then one `set_many` request will be performed to save a data to cache storage.




%package -n python3-easy-cache
Summary:	Useful cache decorators for methods and properties
Provides:	python-easy-cache
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-easy-cache
# Easy caching decorators

[![Build Status](https://travis-ci.org/Bahus/easy_cache.svg?branch=master)](https://travis-ci.org/Bahus/easy_cache)

This package is intended to simplify caching and invalidation process in python-based (primarily) web applications. It's possible to cache execution results of functions; **instance**, **class** and **static** methods; properties. Cache keys may be constructed in various different ways and may depend on any number of parameters.

The package supports tag-based cache invalidation and better works with Django, however any other frameworks can be used – see examples below.

The main idea of this package: you don't need to touch any existing function code to cache its execution results.

## Requirements

Library was tested in the following environments:

* Python 3.7, 3.8, 3.9, 3.10
* Django >=2.0.0

Feel free to try it in yours, but it's not guaranteed it will work. Submit an issue if you think it should.

## Installation

```shell
pip install easy_cache
```

## Introduction

### Different ways to cache something

Imagine you have a time consuming function and you need to cache an execution results, the classic way to achieve this is the next one:

```python
# classic way
from django.core.cache import cache

def time_consuming_operation(n):
    """Calculate sum of number from 1 to provided n"""
    cache_key = 'time_consuming_operation_{}'.format(n)
    result = cache.get(cache_key, None)

    if result is None:
        # not found in cache
        result = sum(range(n + 1))
        # cache result for one hour
        cache.set(cache_key, result, 3600)

    return result

def invalidate_cache(n):
    cache.delete('time_consuming_operation_{}'.format(n))
```

Well, we had to add annoying boilerplate code to achieve this.
Now let's take a look how `easy_cache` can avoid the problem and simplify the code:

```python
# easy way
from easy_cache import ecached

@ecached('time_consuming_operation_{n}', 3600)
def time_consuming_operation(n):
    return sum(range(n + 1))

def invalidate_cache(n):
    time_consuming_operation.invalidate_cache_by_key(n)
```

As we can see the function code left clear.
Heart of the package is two decorators with the similar parameters:

### ecached

Should be used to decorate any callable and cache returned result.

Parameters:

* `cache_key` – cache key generator, default value is `None` so the key will be composed automatically based on a function name, namespace and passed parameters. Also the following types are supported:
  * **string** – may contain [Python advanced string formatting syntax](https://docs.python.org/2/library/string.html#formatstrings), a given value will be formatted with a dict of parameters passed to decorated function, see examples below.
  * **sequence of strings** – each string must be function parameter name.
  * **callable** – is used to generate cache key, decorated function parameters will be passed to this callable and returned value will be used as a cache key. Also one additional signature is available: `callable(meta)`, where `meta` is a dict-like object with some additional attributes – see below.
* `timeout` – value will be cached with provided timeout, basically it should be number of seconds, however it depends on cache backend type. Default value is `DEFAULT_VALUE` – internal constant means that actually no value is provided to cache backend and thus backend should decide what timeout to use. Callable is also supported.
* `tags` – sequence of strings or callable. Should provide or return list of tags added to cached value so cache may be invalidated later with any tag name. Tag may support advanced string formatting syntax. See `cache_key` docs and examples for more details.
* `prefix` – this parameter works both: as regular tag and also as cache key prefix, as usual advanced string formatting and callable are supported here.
* `cache_alias` – cache backend alias name, it can also be [Django cache backend alias  name](https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-CACHES).
* `cache_instance` – cache backend instance may be provided directly via this parameter.

### ecached_property

 Should be used to create so-called cached properties, has signature exactly the same as for `ecached`.

## Simple examples

Code examples is the best way to show the power of this package.

### Decorators can be simply used with default parameters only

```python
from easy_cache import ecached, create_cache_key

# default parameters
# cache key will be generated automatically:
#
# <__module__>.<__class__>.<function name> + function parameters converted to strings,
#
# so be careful when using complex objects, it's
# better to write custom cache key generator in such cases.
#
# timeout will be default for specified cache backend
# "default" cache backend will be used if you use Django
@ecached()
def time_consuming_operation(*args, **kwargs):
    pass

# simple static cache key and cache timeout 100 seconds
@ecached('time_consuming_operation', 100)
def time_consuming_operation():
    pass

# cache key with advanced string formatting syntax
@ecached('my_key:{b}:{d}:{c}')
def time_consuming_operation(a, b, c=100, d='foo'):
    pass

# or
@ecached('key:{kwargs[param1]}:{kwargs[param2]}:{args[0]}')
def time_consuming_operation(*args, **kwargs):
    pass

# use specific cache alias, see "caches framework" below
from functools import partial

memcached = partial(ecached, cache_alias='memcached')

# equivalent to cache_key='{a}:{b}'
@memcached(['a', 'b'], timeout=600)
def time_consuming_operation(a, b, c='default'):
    pass
```

### Using custom cache key generators

```python
# working with parameters provided to cached function
# cache key generator must have the same signature as decorated function
from easy_cache import create_cache_key

def custom_cache_key(self, a, b, c, d):
    return create_cache_key(self.id, a, d)

# working with `meta` object
def custom_cache_key_meta(meta):
    return '{}:{}:{}'.format(meta['self'].id, meta['a'], meta['d'])

# or equivalent
from easy_cache import meta_accepted

@meta_accepted
def custom_cache_key_meta(parameter_with_any_name):
    meta = parameter_with_any_name
    return '{}:{}:{}'.format(meta['self'].id, meta['a'], meta['d'])


class A(object):
    id = 1

    @ecached(custom_cache_key)
    def time_consuming_operation(self, a, b, c=10, d=20):
        ...

    @ecached(custom_cache_key_meta)
    def time_consuming_operation(self, a, b, c=10, d=20):
        ...
```

### How to cache `staticmethod` and `classmethod` correctly

```python
# ecached decorator always comes topmost
class B(object):

    # cache only for each different year
    @ecached(lambda start_date: 'get_list:{}'.format(start_date.year))
    @staticmethod
    def get_list_by_date(start_date):
        ...

    CONST = 'abc'

    @ecached('info_cache:{cls.CONST}', 3600, cache_alias='redis_cache')
    @classmethod
    def get_info(cls):
        ...
```

### MetaCallable object description

Meta object has the following parameters:

* `args` – tuple with positional arguments provided to decorated function
* `kwargs` – dictionary with keyword arguments provided to decorated function
* `returned_value` – value returned from decorated function, available only when meta object is handled in `tags` or `prefix` generators. You have to check `has_returned_value` property before using this parameter:

 ```python
 def generate_cache_key(meta):
     if meta.has_returned_value:
         # ... do something with meta.returned_value ...
 ```

* `call_args` - dictionary with all positional and keyword arguments provided
 to decorated function, you may also access them via `__getitem__` dict interface, e. g. `meta['param1']`.
* `function` - decorated callable
* `scope` - object to which decorated callable is attached, `None` otherwise. Usually it's an instance or a class.

### Tags invalidation, refresh and cached properties

Tags-based cache invalidation allows you to invalidate several cache keys at once.

Imagine you created a web-based book store and your users can mark a book as liked, so you need to maintain a list of liked books for every user but, an information about a book may contain a lot of different data, e.g. authors names, rating, availability in stock, some data from external services and so on.

Some of this information can be calculated on runtime only so you decided to cache the list of liked books.

But what if a book title was updated and we have to find all cache keys where this book is stored and invalidate them. Such task may be pretty complex to complete, however if you tagged all the necessary cache keys with a specific tag you will just need to invalidate the tag only and related cache keys will be invalidated "automatically".

Here are more complex examples introducing Django models and effective tags usage.
Check code comments and doc-strings for detailed description.

```python
from django.db import models
from easy_cache import ecached, ecached_property, create_cache_key


class Book(models.Model):
    title = models.CharField(max_length=250)

    def __unicode__(self):
        return self.title


class User(models.Model):
    name = models.CharField(max_length=100)
    state = models.CharField(
        max_length=15,
        choices=(('active', 'active'), ('deleted', 'deleted')),
    )
    friends = models.ManyToManyField('self', symmetrical=True)
    favorite_books = models.ManyToManyField('Book')

    def __unicode__(self):
        return self.name

    @ecached('users_by_state:{state}', 60, tags=['users_by_states'])
    @classmethod
    def get_users_by_state(cls, state):
        """
        Caches user list by provided state parameter: there will be separate
        cached value for every different state parameter, so we are having 2 different
        cache keys:

        users_by_state:active – cached list of active users
        users_by_state:deleted – cached list of deleted users

        Note that `ecached` decorator always comes topmost.

        To invalidate concrete cached state call the following method
        with the required `state`, e.g.:
        >>> User.get_users_by_state.invalidate_cache_by_key('active')
        ... removes `users_by_state:active` cache key
        or
        >>> User.get_users_by_state.invalidate_cache_by_key(state='deleted')
        ... removes `users_by_state:deleted` cache key

        If you'd like to invalidate all caches for all states call:
        >>> User.get_users_by_state.invalidate_cache_by_tags('users_by_states')
        ... removes both keys, since `users_by_states` tag attached to all of them,

        `invalidate_cache_by_tags` supports both string and list parameter types:
        >>> invalidate_cache_by_tags(['tag1', 'tag2', 'tag3'])

        To refresh concrete cached state call the following method
        with required `state`, e.g:
        >>> User.get_users_by_state.refresh_cache('active')
        ... calls `get_users_by_state('active')` and saves returned value to cache
        or
        >>> User.get_users_by_state.refresh_cache(state='deleted')

        """
        return list(cls.objects.filter(state=state))

    @ecached_property('user_friends_count:{self.id}', timeout=3600)
    def friends_count(self):
        """
        Caches friends count of each user for 1 hour.

        To access cache invalidation functions for a property you
        have to use class object instead of instance.

        Call the following method, to invalidate cache:
        >>> User.friends_count.invalidate_cache_by_key(user)
        ... removes cache key `user_friends_count:{user.id}`
        or
        >>> type(self).friends_count.invalidate_cache_by_key(user)
        or
        >>> self.__class__.friends_count.invalidate_cache_by_key(user)

        Where `user` is desired User instance to invalidate friends count for.

        Call the following method, to refresh cached data:
        >>> User.friends_count.refresh_cache(user)
        ... Updates `user.friends_count` in a cache.
        or
        >>> type(self).friends_count.refresh_cache(user)
        or
        >>> self.__class__.friends_count.refresh_cache(user)
        """
        return self.friends.count()

    @staticmethod
    def get_books_tags(meta):
        """
        Add one tag for every book in list of favorite books.
        So we will add a list of tags to cached favorite books list.
        """
        if not meta.has_returned_value:
            return []

        favorite_books = meta.returned_value
        # yes, it may occupy a lot of cache keys
        return [create_cache_key('book', book.pk) for book in favorite_books]

    @ecached('user_favorite_books:{self.id}', 600, get_books_tags)
    def get_favorite_books(self):
        """
        Caches list of related books by user id. So in code you will use:

        >>> favorite_books = request.user.get_favorite_books() # cached for user

        You may want to invalidate this cache in two cases:

        1. User added new book to favorites:

        >>> User.get_favorite_books.invalidate_cache_by_key(user)
        or
        >>> User.get_favorite_books.invalidate_cache_by_key(self=user)
        or
        >>> from easy_cache import invalidate_cache_key, create_cache_key
        >>> invalidate_cache_key(create_cache_key('user_favorite_books', user.id))
        or
        >>> invalidate_cache_key('user_favorite_books:{}'.format(user.id))

        2. Some information about favorite book was changed, e.g. its title:
        >>> from easy_cache import invalidate_cache_tags, create_tag_cache_key
        >>> tag_cache_key = create_tag_cache_key('book', changed_book_id)
        >>> User.get_favorite_books.invalidate_cache_by_tags(tag_cache_key)
        or
        >>> invalidate_cache_tags(tag_cache_key)

        To refresh cached values use the following patterns:
        >>> User.get_favorite_books.refresh_cache(user)
        or
        >>> User.get_favorite_books.refresh_cache(self=user)
        """
        return self.favorite_books.filter(user=self)
```

## Prefix usage

Commonly `prefix` is used to invalidate all cache-keys in one namespace, e. g.:

```python
from functools import partial

class Shop(models.Model):
    single_shop_cache = partial(ecached, prefix='shop:{self.id}')

    @single_shop_cache('goods_list')
    def get_all_goods_list(self):
        return [...]

    @single_shop_cache('prices_list')
    def get_all_prices_list(self):
        return [...]

# if you have `shop` object you are able to use the following invalidation
# strategies:

# Invalidate cached list of goods for concrete shop
Shop.get_all_goods_list.invalidate_cache_by_key(shop)

# Refresh cached list of goods for concrete shop
Shop.get_all_goods_list.refresh_cache(shop)

# Invalidate cached list of prices for concrete shop
Shop.get_all_prices_list.invalidate_cache_by_key(shop)

# Refresh cached list of prices for concrete shop
Shop.get_all_prices_list.refresh_cache(shop)

# Invalidate all cached items for concrete shop
Shop.get_all_goods_list.invalidate_cache_by_prefix(shop)
# or
Shop.get_all_prices_list.invalidate_cache_by_prefix(shop)
# or
from easy_cache import invalidate_cache_prefix
invalidate_cache_prefix('shop:{self.id}'.format(self=shop))
```

## Invalidation summary

There are two ways to invalidate cache objects: use invalidation methods bound to decorated function and separate functions-invalidators.

```python
<decorated>.invalidate_cache_by_key(*args, **kwargs)
<decorated>.invalidate_cache_by_tags(tags=(), *args, **kwargs)
<decorated>.invalidate_cache_by_prefix(*args, **kwargs)

# <decorated> should be used with a class instance if it is used in a class namespace:
class A:
    id = 1
    
    @ecached()
    def method(self):
        pass

    @ecached_property()
    def obj_property(self):
        pass
        
    @ecached_property('{self.id}:hello')
    def world(self):
        return '<timeconsuming>'

A.method.invalidate_cache_by_key()
# or
A().method.invalidate_cache_by_key()
# only one variant is possible for a properties
A.obj_property.invalidate_cache_by_key()
# and
item = A()
A.world.invalidate_cache_by_key(item)

# and
from easy_cache import (
    invalidate_cache_key,
    invalidate_cache_tags,
    invalidate_cache_prefix,
    create_cache_key,
)

# Note that `cache_instance` and `cache_alias` may be passed
# to the following invalidators
invalidate_cache_key(cache_key)
invalidate_cache_tags(tags)
invalidate_cache_prefix(prefix)
```

Here `tags` can be a string (single tag) or a list of tags. Bound methods should be provided with parameters if they are used in cache key/tag/prefix:

```python
@ecached('key:{a}:value:{c}', tags=['tag:{a}'], prefix='pre:{b}', cache_alias='memcached')
def time_consuming_operation(a, b, c=100):
    pass

time_consuming_operation.invalidate_cache_by_key(a=1, c=11)
time_consuming_operation.invalidate_cache_by_tags(a=10)
time_consuming_operation.invalidate_cache_by_prefix(b=2)

# or using `create_cache_key` helper
invalidate_cache_key(
    create_cache_key('key', 1, 'value', 11), cache_alias='memcached'
)
invalidate_cache_tags(create_cache_key('tag', 10), cache_alias='memcached')
invalidate_cache_prefix('pre:{}'.format(2), cache_alias='memcached')
```

## Refresh summary

There is one way to refresh cache objects: use refresh methods bound to decorated function.

```python
<decorated>.refresh_cache(*args, **kwargs)

# <decorated> should be used with class instance if it is used in class namespace:
class A:
    @ecached()
    def method(self):
        pass

    @ecached_property()
    def obj_property(self):
        pass

A.method.refresh_cache()
A.obj_property.refresh_cache()
```

## Internal caches framework

Be aware: internal cache framework instance is single threaded, so if you add new cache instance in a one thread it won't appear in another.

Easy-cache uses build-in Django cache framework by default, so you can choose what cache storage to use on every decorated function, e.g.:

```python
# Django settings
CACHES={
    'local_memory': {
        'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
        'LOCATION': 'locmem',
        'KEY_PREFIX': 'custom_prefix',
    },
    'memcached': {
        'BACKEND': 'django.core.cache.backends.memcached.PyMemcacheCache',
        'LOCATION': '127.0.0.1:11211',
        'KEY_PREFIX': 'memcached',
    }
}

# then in somewhere code
@ecached(..., cache_alias='memcached')
# or
@ecached(..., cache_alias='local_memory')
# or even
from django.core.cache import caches
another_cache = caches['another_cache']
@ecached(..., cache_instance=another_cache)
```

However if you don't use Django, there is cache framework built into easy-cache package, it can be used in the same fashion as Django caches:

```python
# Custom cache instance class must implement AbstractCacheInstance interface:
from easy_cache.abc import AbstractCacheInstance
from easy_cache.core import DEFAULT_TIMEOUT, NOT_FOUND

class CustomCache(AbstractCacheInstance):

    def get(self, key, default=NOT_FOUND):
        ...

    def get_many(self, keys):
        ...

    def set(self, key, value, timeout=DEFAULT_TIMEOUT):
        ...

    def set_many(self, data_dict, timeout=DEFAULT_TIMEOUT):
        ...

    def delete(self, key):
        ...

from easy_cache import caches

custom_cache = CustomCache()
caches['new_cache'] = custom_cache
caches.set_default(CustomCacheDefault())

# and then
@ecached(..., cache_alias='new_cache')
# or
@ecached(..., cache_instance=custom_cache)
# will use `default` alias
@ecached(...)
```

There is already implemented redis cache instance class, based on [redis-py client](https://pypi.python.org/pypi/redis):

```python
from redis import StrictRedis
from easy_cache.contrib.redis_cache import RedisCacheInstance
from easy_cache import caches

redis_cache = RedisCacheInstance(StrictRedis(host='...', port='...'))
caches.set_default(redis_cache)

# will use `default` alias
@ecached(...)
```

## Dynamic timeout example

You may need to provide cache timeout dynamically depending on function parameters:

```python
def dynamic_timeout(group):
    if group == 'admins':
        timeout = 10
    else:
        timeout = 100
    return timeout

@ecached('key:{group}', timeout=dynamic_timeout)
def get_users_by_group(group):
    ...
```

## Development and contribution

Live instances of Redis and Memcached are required for few tests to pass, so it's recommended to use docker/docker-compose to setup the necessary environment:

```shell
docker-compose up -d

# to enable debug logs
# export EASY_CACHE_DEBUG="yes"

# install package locally
pip install -e .[tests]

# run tests with pytest or tox
pytest
tox
```

## Performance and overhead

Benchmarking may be executed with `tox` command and it shows that decorators give about 4% of overhead in worst case and about 1-2% overhead on the average.

If you don't use tags or prefix you will get one cache request for `get` and one request for `set` if result not found in cache, otherwise two consecutive requests will be made: `get` and `get_many` to receive actual value from cache and validate its tags (prefix). Then one `set_many` request will be performed to save a data to cache storage.




%package help
Summary:	Development documents and examples for easy-cache
Provides:	python3-easy-cache-doc
%description help
# Easy caching decorators

[![Build Status](https://travis-ci.org/Bahus/easy_cache.svg?branch=master)](https://travis-ci.org/Bahus/easy_cache)

This package is intended to simplify caching and invalidation process in python-based (primarily) web applications. It's possible to cache execution results of functions; **instance**, **class** and **static** methods; properties. Cache keys may be constructed in various different ways and may depend on any number of parameters.

The package supports tag-based cache invalidation and better works with Django, however any other frameworks can be used – see examples below.

The main idea of this package: you don't need to touch any existing function code to cache its execution results.

## Requirements

Library was tested in the following environments:

* Python 3.7, 3.8, 3.9, 3.10
* Django >=2.0.0

Feel free to try it in yours, but it's not guaranteed it will work. Submit an issue if you think it should.

## Installation

```shell
pip install easy_cache
```

## Introduction

### Different ways to cache something

Imagine you have a time consuming function and you need to cache an execution results, the classic way to achieve this is the next one:

```python
# classic way
from django.core.cache import cache

def time_consuming_operation(n):
    """Calculate sum of number from 1 to provided n"""
    cache_key = 'time_consuming_operation_{}'.format(n)
    result = cache.get(cache_key, None)

    if result is None:
        # not found in cache
        result = sum(range(n + 1))
        # cache result for one hour
        cache.set(cache_key, result, 3600)

    return result

def invalidate_cache(n):
    cache.delete('time_consuming_operation_{}'.format(n))
```

Well, we had to add annoying boilerplate code to achieve this.
Now let's take a look how `easy_cache` can avoid the problem and simplify the code:

```python
# easy way
from easy_cache import ecached

@ecached('time_consuming_operation_{n}', 3600)
def time_consuming_operation(n):
    return sum(range(n + 1))

def invalidate_cache(n):
    time_consuming_operation.invalidate_cache_by_key(n)
```

As we can see the function code left clear.
Heart of the package is two decorators with the similar parameters:

### ecached

Should be used to decorate any callable and cache returned result.

Parameters:

* `cache_key` – cache key generator, default value is `None` so the key will be composed automatically based on a function name, namespace and passed parameters. Also the following types are supported:
  * **string** – may contain [Python advanced string formatting syntax](https://docs.python.org/2/library/string.html#formatstrings), a given value will be formatted with a dict of parameters passed to decorated function, see examples below.
  * **sequence of strings** – each string must be function parameter name.
  * **callable** – is used to generate cache key, decorated function parameters will be passed to this callable and returned value will be used as a cache key. Also one additional signature is available: `callable(meta)`, where `meta` is a dict-like object with some additional attributes – see below.
* `timeout` – value will be cached with provided timeout, basically it should be number of seconds, however it depends on cache backend type. Default value is `DEFAULT_VALUE` – internal constant means that actually no value is provided to cache backend and thus backend should decide what timeout to use. Callable is also supported.
* `tags` – sequence of strings or callable. Should provide or return list of tags added to cached value so cache may be invalidated later with any tag name. Tag may support advanced string formatting syntax. See `cache_key` docs and examples for more details.
* `prefix` – this parameter works both: as regular tag and also as cache key prefix, as usual advanced string formatting and callable are supported here.
* `cache_alias` – cache backend alias name, it can also be [Django cache backend alias  name](https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-CACHES).
* `cache_instance` – cache backend instance may be provided directly via this parameter.

### ecached_property

 Should be used to create so-called cached properties, has signature exactly the same as for `ecached`.

## Simple examples

Code examples is the best way to show the power of this package.

### Decorators can be simply used with default parameters only

```python
from easy_cache import ecached, create_cache_key

# default parameters
# cache key will be generated automatically:
#
# <__module__>.<__class__>.<function name> + function parameters converted to strings,
#
# so be careful when using complex objects, it's
# better to write custom cache key generator in such cases.
#
# timeout will be default for specified cache backend
# "default" cache backend will be used if you use Django
@ecached()
def time_consuming_operation(*args, **kwargs):
    pass

# simple static cache key and cache timeout 100 seconds
@ecached('time_consuming_operation', 100)
def time_consuming_operation():
    pass

# cache key with advanced string formatting syntax
@ecached('my_key:{b}:{d}:{c}')
def time_consuming_operation(a, b, c=100, d='foo'):
    pass

# or
@ecached('key:{kwargs[param1]}:{kwargs[param2]}:{args[0]}')
def time_consuming_operation(*args, **kwargs):
    pass

# use specific cache alias, see "caches framework" below
from functools import partial

memcached = partial(ecached, cache_alias='memcached')

# equivalent to cache_key='{a}:{b}'
@memcached(['a', 'b'], timeout=600)
def time_consuming_operation(a, b, c='default'):
    pass
```

### Using custom cache key generators

```python
# working with parameters provided to cached function
# cache key generator must have the same signature as decorated function
from easy_cache import create_cache_key

def custom_cache_key(self, a, b, c, d):
    return create_cache_key(self.id, a, d)

# working with `meta` object
def custom_cache_key_meta(meta):
    return '{}:{}:{}'.format(meta['self'].id, meta['a'], meta['d'])

# or equivalent
from easy_cache import meta_accepted

@meta_accepted
def custom_cache_key_meta(parameter_with_any_name):
    meta = parameter_with_any_name
    return '{}:{}:{}'.format(meta['self'].id, meta['a'], meta['d'])


class A(object):
    id = 1

    @ecached(custom_cache_key)
    def time_consuming_operation(self, a, b, c=10, d=20):
        ...

    @ecached(custom_cache_key_meta)
    def time_consuming_operation(self, a, b, c=10, d=20):
        ...
```

### How to cache `staticmethod` and `classmethod` correctly

```python
# ecached decorator always comes topmost
class B(object):

    # cache only for each different year
    @ecached(lambda start_date: 'get_list:{}'.format(start_date.year))
    @staticmethod
    def get_list_by_date(start_date):
        ...

    CONST = 'abc'

    @ecached('info_cache:{cls.CONST}', 3600, cache_alias='redis_cache')
    @classmethod
    def get_info(cls):
        ...
```

### MetaCallable object description

Meta object has the following parameters:

* `args` – tuple with positional arguments provided to decorated function
* `kwargs` – dictionary with keyword arguments provided to decorated function
* `returned_value` – value returned from decorated function, available only when meta object is handled in `tags` or `prefix` generators. You have to check `has_returned_value` property before using this parameter:

 ```python
 def generate_cache_key(meta):
     if meta.has_returned_value:
         # ... do something with meta.returned_value ...
 ```

* `call_args` - dictionary with all positional and keyword arguments provided
 to decorated function, you may also access them via `__getitem__` dict interface, e. g. `meta['param1']`.
* `function` - decorated callable
* `scope` - object to which decorated callable is attached, `None` otherwise. Usually it's an instance or a class.

### Tags invalidation, refresh and cached properties

Tags-based cache invalidation allows you to invalidate several cache keys at once.

Imagine you created a web-based book store and your users can mark a book as liked, so you need to maintain a list of liked books for every user but, an information about a book may contain a lot of different data, e.g. authors names, rating, availability in stock, some data from external services and so on.

Some of this information can be calculated on runtime only so you decided to cache the list of liked books.

But what if a book title was updated and we have to find all cache keys where this book is stored and invalidate them. Such task may be pretty complex to complete, however if you tagged all the necessary cache keys with a specific tag you will just need to invalidate the tag only and related cache keys will be invalidated "automatically".

Here are more complex examples introducing Django models and effective tags usage.
Check code comments and doc-strings for detailed description.

```python
from django.db import models
from easy_cache import ecached, ecached_property, create_cache_key


class Book(models.Model):
    title = models.CharField(max_length=250)

    def __unicode__(self):
        return self.title


class User(models.Model):
    name = models.CharField(max_length=100)
    state = models.CharField(
        max_length=15,
        choices=(('active', 'active'), ('deleted', 'deleted')),
    )
    friends = models.ManyToManyField('self', symmetrical=True)
    favorite_books = models.ManyToManyField('Book')

    def __unicode__(self):
        return self.name

    @ecached('users_by_state:{state}', 60, tags=['users_by_states'])
    @classmethod
    def get_users_by_state(cls, state):
        """
        Caches user list by provided state parameter: there will be separate
        cached value for every different state parameter, so we are having 2 different
        cache keys:

        users_by_state:active – cached list of active users
        users_by_state:deleted – cached list of deleted users

        Note that `ecached` decorator always comes topmost.

        To invalidate concrete cached state call the following method
        with the required `state`, e.g.:
        >>> User.get_users_by_state.invalidate_cache_by_key('active')
        ... removes `users_by_state:active` cache key
        or
        >>> User.get_users_by_state.invalidate_cache_by_key(state='deleted')
        ... removes `users_by_state:deleted` cache key

        If you'd like to invalidate all caches for all states call:
        >>> User.get_users_by_state.invalidate_cache_by_tags('users_by_states')
        ... removes both keys, since `users_by_states` tag attached to all of them,

        `invalidate_cache_by_tags` supports both string and list parameter types:
        >>> invalidate_cache_by_tags(['tag1', 'tag2', 'tag3'])

        To refresh concrete cached state call the following method
        with required `state`, e.g:
        >>> User.get_users_by_state.refresh_cache('active')
        ... calls `get_users_by_state('active')` and saves returned value to cache
        or
        >>> User.get_users_by_state.refresh_cache(state='deleted')

        """
        return list(cls.objects.filter(state=state))

    @ecached_property('user_friends_count:{self.id}', timeout=3600)
    def friends_count(self):
        """
        Caches friends count of each user for 1 hour.

        To access cache invalidation functions for a property you
        have to use class object instead of instance.

        Call the following method, to invalidate cache:
        >>> User.friends_count.invalidate_cache_by_key(user)
        ... removes cache key `user_friends_count:{user.id}`
        or
        >>> type(self).friends_count.invalidate_cache_by_key(user)
        or
        >>> self.__class__.friends_count.invalidate_cache_by_key(user)

        Where `user` is desired User instance to invalidate friends count for.

        Call the following method, to refresh cached data:
        >>> User.friends_count.refresh_cache(user)
        ... Updates `user.friends_count` in a cache.
        or
        >>> type(self).friends_count.refresh_cache(user)
        or
        >>> self.__class__.friends_count.refresh_cache(user)
        """
        return self.friends.count()

    @staticmethod
    def get_books_tags(meta):
        """
        Add one tag for every book in list of favorite books.
        So we will add a list of tags to cached favorite books list.
        """
        if not meta.has_returned_value:
            return []

        favorite_books = meta.returned_value
        # yes, it may occupy a lot of cache keys
        return [create_cache_key('book', book.pk) for book in favorite_books]

    @ecached('user_favorite_books:{self.id}', 600, get_books_tags)
    def get_favorite_books(self):
        """
        Caches list of related books by user id. So in code you will use:

        >>> favorite_books = request.user.get_favorite_books() # cached for user

        You may want to invalidate this cache in two cases:

        1. User added new book to favorites:

        >>> User.get_favorite_books.invalidate_cache_by_key(user)
        or
        >>> User.get_favorite_books.invalidate_cache_by_key(self=user)
        or
        >>> from easy_cache import invalidate_cache_key, create_cache_key
        >>> invalidate_cache_key(create_cache_key('user_favorite_books', user.id))
        or
        >>> invalidate_cache_key('user_favorite_books:{}'.format(user.id))

        2. Some information about favorite book was changed, e.g. its title:
        >>> from easy_cache import invalidate_cache_tags, create_tag_cache_key
        >>> tag_cache_key = create_tag_cache_key('book', changed_book_id)
        >>> User.get_favorite_books.invalidate_cache_by_tags(tag_cache_key)
        or
        >>> invalidate_cache_tags(tag_cache_key)

        To refresh cached values use the following patterns:
        >>> User.get_favorite_books.refresh_cache(user)
        or
        >>> User.get_favorite_books.refresh_cache(self=user)
        """
        return self.favorite_books.filter(user=self)
```

## Prefix usage

Commonly `prefix` is used to invalidate all cache-keys in one namespace, e. g.:

```python
from functools import partial

class Shop(models.Model):
    single_shop_cache = partial(ecached, prefix='shop:{self.id}')

    @single_shop_cache('goods_list')
    def get_all_goods_list(self):
        return [...]

    @single_shop_cache('prices_list')
    def get_all_prices_list(self):
        return [...]

# if you have `shop` object you are able to use the following invalidation
# strategies:

# Invalidate cached list of goods for concrete shop
Shop.get_all_goods_list.invalidate_cache_by_key(shop)

# Refresh cached list of goods for concrete shop
Shop.get_all_goods_list.refresh_cache(shop)

# Invalidate cached list of prices for concrete shop
Shop.get_all_prices_list.invalidate_cache_by_key(shop)

# Refresh cached list of prices for concrete shop
Shop.get_all_prices_list.refresh_cache(shop)

# Invalidate all cached items for concrete shop
Shop.get_all_goods_list.invalidate_cache_by_prefix(shop)
# or
Shop.get_all_prices_list.invalidate_cache_by_prefix(shop)
# or
from easy_cache import invalidate_cache_prefix
invalidate_cache_prefix('shop:{self.id}'.format(self=shop))
```

## Invalidation summary

There are two ways to invalidate cache objects: use invalidation methods bound to decorated function and separate functions-invalidators.

```python
<decorated>.invalidate_cache_by_key(*args, **kwargs)
<decorated>.invalidate_cache_by_tags(tags=(), *args, **kwargs)
<decorated>.invalidate_cache_by_prefix(*args, **kwargs)

# <decorated> should be used with a class instance if it is used in a class namespace:
class A:
    id = 1
    
    @ecached()
    def method(self):
        pass

    @ecached_property()
    def obj_property(self):
        pass
        
    @ecached_property('{self.id}:hello')
    def world(self):
        return '<timeconsuming>'

A.method.invalidate_cache_by_key()
# or
A().method.invalidate_cache_by_key()
# only one variant is possible for a properties
A.obj_property.invalidate_cache_by_key()
# and
item = A()
A.world.invalidate_cache_by_key(item)

# and
from easy_cache import (
    invalidate_cache_key,
    invalidate_cache_tags,
    invalidate_cache_prefix,
    create_cache_key,
)

# Note that `cache_instance` and `cache_alias` may be passed
# to the following invalidators
invalidate_cache_key(cache_key)
invalidate_cache_tags(tags)
invalidate_cache_prefix(prefix)
```

Here `tags` can be a string (single tag) or a list of tags. Bound methods should be provided with parameters if they are used in cache key/tag/prefix:

```python
@ecached('key:{a}:value:{c}', tags=['tag:{a}'], prefix='pre:{b}', cache_alias='memcached')
def time_consuming_operation(a, b, c=100):
    pass

time_consuming_operation.invalidate_cache_by_key(a=1, c=11)
time_consuming_operation.invalidate_cache_by_tags(a=10)
time_consuming_operation.invalidate_cache_by_prefix(b=2)

# or using `create_cache_key` helper
invalidate_cache_key(
    create_cache_key('key', 1, 'value', 11), cache_alias='memcached'
)
invalidate_cache_tags(create_cache_key('tag', 10), cache_alias='memcached')
invalidate_cache_prefix('pre:{}'.format(2), cache_alias='memcached')
```

## Refresh summary

There is one way to refresh cache objects: use refresh methods bound to decorated function.

```python
<decorated>.refresh_cache(*args, **kwargs)

# <decorated> should be used with class instance if it is used in class namespace:
class A:
    @ecached()
    def method(self):
        pass

    @ecached_property()
    def obj_property(self):
        pass

A.method.refresh_cache()
A.obj_property.refresh_cache()
```

## Internal caches framework

Be aware: internal cache framework instance is single threaded, so if you add new cache instance in a one thread it won't appear in another.

Easy-cache uses build-in Django cache framework by default, so you can choose what cache storage to use on every decorated function, e.g.:

```python
# Django settings
CACHES={
    'local_memory': {
        'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
        'LOCATION': 'locmem',
        'KEY_PREFIX': 'custom_prefix',
    },
    'memcached': {
        'BACKEND': 'django.core.cache.backends.memcached.PyMemcacheCache',
        'LOCATION': '127.0.0.1:11211',
        'KEY_PREFIX': 'memcached',
    }
}

# then in somewhere code
@ecached(..., cache_alias='memcached')
# or
@ecached(..., cache_alias='local_memory')
# or even
from django.core.cache import caches
another_cache = caches['another_cache']
@ecached(..., cache_instance=another_cache)
```

However if you don't use Django, there is cache framework built into easy-cache package, it can be used in the same fashion as Django caches:

```python
# Custom cache instance class must implement AbstractCacheInstance interface:
from easy_cache.abc import AbstractCacheInstance
from easy_cache.core import DEFAULT_TIMEOUT, NOT_FOUND

class CustomCache(AbstractCacheInstance):

    def get(self, key, default=NOT_FOUND):
        ...

    def get_many(self, keys):
        ...

    def set(self, key, value, timeout=DEFAULT_TIMEOUT):
        ...

    def set_many(self, data_dict, timeout=DEFAULT_TIMEOUT):
        ...

    def delete(self, key):
        ...

from easy_cache import caches

custom_cache = CustomCache()
caches['new_cache'] = custom_cache
caches.set_default(CustomCacheDefault())

# and then
@ecached(..., cache_alias='new_cache')
# or
@ecached(..., cache_instance=custom_cache)
# will use `default` alias
@ecached(...)
```

There is already implemented redis cache instance class, based on [redis-py client](https://pypi.python.org/pypi/redis):

```python
from redis import StrictRedis
from easy_cache.contrib.redis_cache import RedisCacheInstance
from easy_cache import caches

redis_cache = RedisCacheInstance(StrictRedis(host='...', port='...'))
caches.set_default(redis_cache)

# will use `default` alias
@ecached(...)
```

## Dynamic timeout example

You may need to provide cache timeout dynamically depending on function parameters:

```python
def dynamic_timeout(group):
    if group == 'admins':
        timeout = 10
    else:
        timeout = 100
    return timeout

@ecached('key:{group}', timeout=dynamic_timeout)
def get_users_by_group(group):
    ...
```

## Development and contribution

Live instances of Redis and Memcached are required for few tests to pass, so it's recommended to use docker/docker-compose to setup the necessary environment:

```shell
docker-compose up -d

# to enable debug logs
# export EASY_CACHE_DEBUG="yes"

# install package locally
pip install -e .[tests]

# run tests with pytest or tox
pytest
tox
```

## Performance and overhead

Benchmarking may be executed with `tox` command and it shows that decorators give about 4% of overhead in worst case and about 1-2% overhead on the average.

If you don't use tags or prefix you will get one cache request for `get` and one request for `set` if result not found in cache, otherwise two consecutive requests will be made: `get` and `get_many` to receive actual value from cache and validate its tags (prefix). Then one `set_many` request will be performed to save a data to cache storage.




%prep
%autosetup -n easy-cache-2.0.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-easy-cache -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.0-1
- Package Spec generated