1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
%global _empty_manifest_terminate_build 0
Name: python-easyLDA
Version: 0.2.8.6
Release: 1
Summary: easily bult LDA Topic Models with just a list of docs (e.g. a list of twitter posts in CSV/TXT
License: MIT
URL: https://github.com/shichaoji/easyLDA
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/02/25/06d3ccf63f834d3b5a6f11e4a35271dbf332d842b43386cd82597593f9c3/easyLDA-0.2.8.6.tar.gz
BuildArch: noarch
Requires: python3-nltk
Requires: python3-gensim
Requires: python3-pyLDAvis
%description
|PyPI version|
easyLDA is a library that easily build LDA Topic Models with just a list of docs (e.g. a list of twitter posts in CSV/TXT)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
github: https://github.com/shichaoji/easyLDA
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- If you have a collection of documents, and what to explore the
relationship & topics of the docs, easyLDA is a very handy library to
use. Simply run the commend and you'll get a trained LDA model with
results visualized
The library pipeline text preprocessing, such as tf-idf, n-grams from Gensim library
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Credit to:
https://radimrehurek.com/gensim/
http://pyldavis.readthedocs.io/en/latest/readme.html
installation
~~~~~~~~~~~~
``$ pip install easyLDA``
usage example
~~~~~~~~~~~~~
simple need a text file (.csv) with each row represents a document (a post, comment, short article etc.), with only one column which is the text
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
text file (csv) sample view
^^^^^^^^^^^^^^^^^^^^^^^^^^^
easy to use, just in a shell window, type: easyLDA, then specify the location of the text document
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1. then choose how many topics you want the model to fit
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2. choose the topic contains only single word (1) or can be phases (2/3) as well
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
the program will be starting to train
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- in shell $ easyLDA
model result
~~~~~~~~~~~~
models folder created by program contains the trained model
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
xx.html file is the interactive visulization of the model result
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
visualization live example
~~~~~~~~~~~~~~~~~~~~~~~~~~
http://shichaoji.com/2016/02/04/easylda-live-example/
static pic result
~~~~~~~~~~~~~~~~~~~~~~
%package -n python3-easyLDA
Summary: easily bult LDA Topic Models with just a list of docs (e.g. a list of twitter posts in CSV/TXT
Provides: python-easyLDA
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-easyLDA
|PyPI version|
easyLDA is a library that easily build LDA Topic Models with just a list of docs (e.g. a list of twitter posts in CSV/TXT)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
github: https://github.com/shichaoji/easyLDA
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- If you have a collection of documents, and what to explore the
relationship & topics of the docs, easyLDA is a very handy library to
use. Simply run the commend and you'll get a trained LDA model with
results visualized
The library pipeline text preprocessing, such as tf-idf, n-grams from Gensim library
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Credit to:
https://radimrehurek.com/gensim/
http://pyldavis.readthedocs.io/en/latest/readme.html
installation
~~~~~~~~~~~~
``$ pip install easyLDA``
usage example
~~~~~~~~~~~~~
simple need a text file (.csv) with each row represents a document (a post, comment, short article etc.), with only one column which is the text
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
text file (csv) sample view
^^^^^^^^^^^^^^^^^^^^^^^^^^^
easy to use, just in a shell window, type: easyLDA, then specify the location of the text document
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1. then choose how many topics you want the model to fit
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2. choose the topic contains only single word (1) or can be phases (2/3) as well
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
the program will be starting to train
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- in shell $ easyLDA
model result
~~~~~~~~~~~~
models folder created by program contains the trained model
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
xx.html file is the interactive visulization of the model result
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
visualization live example
~~~~~~~~~~~~~~~~~~~~~~~~~~
http://shichaoji.com/2016/02/04/easylda-live-example/
static pic result
~~~~~~~~~~~~~~~~~~~~~~
%package help
Summary: Development documents and examples for easyLDA
Provides: python3-easyLDA-doc
%description help
|PyPI version|
easyLDA is a library that easily build LDA Topic Models with just a list of docs (e.g. a list of twitter posts in CSV/TXT)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
github: https://github.com/shichaoji/easyLDA
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- If you have a collection of documents, and what to explore the
relationship & topics of the docs, easyLDA is a very handy library to
use. Simply run the commend and you'll get a trained LDA model with
results visualized
The library pipeline text preprocessing, such as tf-idf, n-grams from Gensim library
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Credit to:
https://radimrehurek.com/gensim/
http://pyldavis.readthedocs.io/en/latest/readme.html
installation
~~~~~~~~~~~~
``$ pip install easyLDA``
usage example
~~~~~~~~~~~~~
simple need a text file (.csv) with each row represents a document (a post, comment, short article etc.), with only one column which is the text
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
text file (csv) sample view
^^^^^^^^^^^^^^^^^^^^^^^^^^^
easy to use, just in a shell window, type: easyLDA, then specify the location of the text document
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1. then choose how many topics you want the model to fit
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2. choose the topic contains only single word (1) or can be phases (2/3) as well
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
the program will be starting to train
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- in shell $ easyLDA
model result
~~~~~~~~~~~~
models folder created by program contains the trained model
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
xx.html file is the interactive visulization of the model result
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
visualization live example
~~~~~~~~~~~~~~~~~~~~~~~~~~
http://shichaoji.com/2016/02/04/easylda-live-example/
static pic result
~~~~~~~~~~~~~~~~~~~~~~
%prep
%autosetup -n easyLDA-0.2.8.6
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-easyLDA -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.8.6-1
- Package Spec generated
|