summaryrefslogtreecommitdiff
path: root/python-easynn.spec
blob: 9a21dca87dc91ec18e9ffeb5e8a3bccf907f3cd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
%global _empty_manifest_terminate_build 0
Name:		python-EasyNN
Version:	0.2.2
Release:	1
Summary:	EasyNN is a python package designed to provide an easy-to-use neural network. The package is designed to work right out of the box, while also allowing the user to customize features as they see fit.
License:	mit
URL:		https://pypi.org/project/EasyNN/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/93/2b/ca52f80d2fc2584810e8481ed0652a962e8518e9d997686f5b3c27be3d6e/EasyNN-0.2.2.tar.gz
BuildArch:	noarch

Requires:	python3-matplotlib
Requires:	python3-clint
Requires:	python3-tabulate
Requires:	python3-requests
Requires:	python3-numpy
Requires:	python3-nptyping
Requires:	python3-beautifulsoup4
Requires:	python3-google-search-results
Requires:	python3-prettyformatter

%description
![](https://raw.githubusercontent.com/danielwilczak101/EasyNN/media/images/readme_logo.png)

# EasyNN - Neural Networks made Easy
EasyNN is a python package designed to provide an easy-to-use Neural Network. The package is designed to work right out of the box with multiple datasets, while also allowing the user to customize features as they see fit. 
### EasyNN requires Python version 3.9.7 or greater.

## See our [wiki](https://github.com/danielwilczak101/EasyNN/wiki) for more information and [Datasets](https://github.com/danielwilczak101/EasyNN/wiki).

## Installation:

Run python's pip3 to install:

```Python
pip3 install EasyNN
```

### Model:
```Python
from EasyNN.examples.mnist.number.trained import model

# Classify an image.
print(model.classify(image))
```

### Dataset Example:
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.examples.mnist.number.data import dataset

images, labels = dataset

# Classify what the second image is in the dataset.
print(model.classify(images[1]))

# Show the image.
model.show(images[1])
```

### Dataset example output:
```
Downloading - number_parameters.npz:
[################################] 1769/1769 - 00:00:00
Downloading - number_structure.pkl:
[################################] 10700/10700 - 00:00:00
Downloading - number_dataset.npz:
[################################] 11221/11221 - 00:00:00
0
```

### Full example:
More info can be found about [converting images](https://github.com/danielwilczak101/EasyNN/wiki/Image-Utility) in the utilities section.
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.utilities import Preprocess, download

# Download an example image.
download("three.jpg","https://bit.ly/3dbO1eV")

format_options = dict(
    grayscale=True,
    invert=True,
    process=True,
    contrast=30,
    resize=(28, 28),
    rotate=3,
)

# Converting your image into the correct format for the mnist number dataset.
image = Preprocess("three.jpg").format(**format_options)

# Classify what the image is using the pretrained model.
print(model.classify(image))

# Show the image after it has been processed.
model.show(image)
```
### Output:
```bash
Downloading - four.jpg:
[################################] 1371/1371 - 00:00:00
3
```

### Image output:
<p align="center">
  <img width="400px" height="400px" src="https://raw.githubusercontent.com/danielwilczak101/EasyNN/media/images/example_three.png">
</p>

### Trained Models
Use the trained models section to see EasyNN's datasets and pre-trained neural networks ready to run.  
<br />
[MNIST Number](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Numbers) Classifier network for images of handwritten single digits between 0 and 9.  
[MNIST Fashion](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Fashion) Classifier network for ten classes of human clothing images of the size 28x28 pixels.  
[Cifar 10](https://github.com/danielwilczak101/EasyNN/wiki/Cifar10) Classifier network for ten types of images varying from airplane, cat, dog, etc - 32x32 RGB images.

## To see more examples with many other datasets. Please visit our [wiki](https://github.com/danielwilczak101/EasyNN/wiki).


%package -n python3-EasyNN
Summary:	EasyNN is a python package designed to provide an easy-to-use neural network. The package is designed to work right out of the box, while also allowing the user to customize features as they see fit.
Provides:	python-EasyNN
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-EasyNN
![](https://raw.githubusercontent.com/danielwilczak101/EasyNN/media/images/readme_logo.png)

# EasyNN - Neural Networks made Easy
EasyNN is a python package designed to provide an easy-to-use Neural Network. The package is designed to work right out of the box with multiple datasets, while also allowing the user to customize features as they see fit. 
### EasyNN requires Python version 3.9.7 or greater.

## See our [wiki](https://github.com/danielwilczak101/EasyNN/wiki) for more information and [Datasets](https://github.com/danielwilczak101/EasyNN/wiki).

## Installation:

Run python's pip3 to install:

```Python
pip3 install EasyNN
```

### Model:
```Python
from EasyNN.examples.mnist.number.trained import model

# Classify an image.
print(model.classify(image))
```

### Dataset Example:
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.examples.mnist.number.data import dataset

images, labels = dataset

# Classify what the second image is in the dataset.
print(model.classify(images[1]))

# Show the image.
model.show(images[1])
```

### Dataset example output:
```
Downloading - number_parameters.npz:
[################################] 1769/1769 - 00:00:00
Downloading - number_structure.pkl:
[################################] 10700/10700 - 00:00:00
Downloading - number_dataset.npz:
[################################] 11221/11221 - 00:00:00
0
```

### Full example:
More info can be found about [converting images](https://github.com/danielwilczak101/EasyNN/wiki/Image-Utility) in the utilities section.
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.utilities import Preprocess, download

# Download an example image.
download("three.jpg","https://bit.ly/3dbO1eV")

format_options = dict(
    grayscale=True,
    invert=True,
    process=True,
    contrast=30,
    resize=(28, 28),
    rotate=3,
)

# Converting your image into the correct format for the mnist number dataset.
image = Preprocess("three.jpg").format(**format_options)

# Classify what the image is using the pretrained model.
print(model.classify(image))

# Show the image after it has been processed.
model.show(image)
```
### Output:
```bash
Downloading - four.jpg:
[################################] 1371/1371 - 00:00:00
3
```

### Image output:
<p align="center">
  <img width="400px" height="400px" src="https://raw.githubusercontent.com/danielwilczak101/EasyNN/media/images/example_three.png">
</p>

### Trained Models
Use the trained models section to see EasyNN's datasets and pre-trained neural networks ready to run.  
<br />
[MNIST Number](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Numbers) Classifier network for images of handwritten single digits between 0 and 9.  
[MNIST Fashion](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Fashion) Classifier network for ten classes of human clothing images of the size 28x28 pixels.  
[Cifar 10](https://github.com/danielwilczak101/EasyNN/wiki/Cifar10) Classifier network for ten types of images varying from airplane, cat, dog, etc - 32x32 RGB images.

## To see more examples with many other datasets. Please visit our [wiki](https://github.com/danielwilczak101/EasyNN/wiki).


%package help
Summary:	Development documents and examples for EasyNN
Provides:	python3-EasyNN-doc
%description help
![](https://raw.githubusercontent.com/danielwilczak101/EasyNN/media/images/readme_logo.png)

# EasyNN - Neural Networks made Easy
EasyNN is a python package designed to provide an easy-to-use Neural Network. The package is designed to work right out of the box with multiple datasets, while also allowing the user to customize features as they see fit. 
### EasyNN requires Python version 3.9.7 or greater.

## See our [wiki](https://github.com/danielwilczak101/EasyNN/wiki) for more information and [Datasets](https://github.com/danielwilczak101/EasyNN/wiki).

## Installation:

Run python's pip3 to install:

```Python
pip3 install EasyNN
```

### Model:
```Python
from EasyNN.examples.mnist.number.trained import model

# Classify an image.
print(model.classify(image))
```

### Dataset Example:
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.examples.mnist.number.data import dataset

images, labels = dataset

# Classify what the second image is in the dataset.
print(model.classify(images[1]))

# Show the image.
model.show(images[1])
```

### Dataset example output:
```
Downloading - number_parameters.npz:
[################################] 1769/1769 - 00:00:00
Downloading - number_structure.pkl:
[################################] 10700/10700 - 00:00:00
Downloading - number_dataset.npz:
[################################] 11221/11221 - 00:00:00
0
```

### Full example:
More info can be found about [converting images](https://github.com/danielwilczak101/EasyNN/wiki/Image-Utility) in the utilities section.
```Python
from EasyNN.examples.mnist.number.trained import model
from EasyNN.utilities import Preprocess, download

# Download an example image.
download("three.jpg","https://bit.ly/3dbO1eV")

format_options = dict(
    grayscale=True,
    invert=True,
    process=True,
    contrast=30,
    resize=(28, 28),
    rotate=3,
)

# Converting your image into the correct format for the mnist number dataset.
image = Preprocess("three.jpg").format(**format_options)

# Classify what the image is using the pretrained model.
print(model.classify(image))

# Show the image after it has been processed.
model.show(image)
```
### Output:
```bash
Downloading - four.jpg:
[################################] 1371/1371 - 00:00:00
3
```

### Image output:
<p align="center">
  <img width="400px" height="400px" src="https://raw.githubusercontent.com/danielwilczak101/EasyNN/media/images/example_three.png">
</p>

### Trained Models
Use the trained models section to see EasyNN's datasets and pre-trained neural networks ready to run.  
<br />
[MNIST Number](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Numbers) Classifier network for images of handwritten single digits between 0 and 9.  
[MNIST Fashion](https://github.com/danielwilczak101/EasyNN/wiki/MNIST-Fashion) Classifier network for ten classes of human clothing images of the size 28x28 pixels.  
[Cifar 10](https://github.com/danielwilczak101/EasyNN/wiki/Cifar10) Classifier network for ten types of images varying from airplane, cat, dog, etc - 32x32 RGB images.

## To see more examples with many other datasets. Please visit our [wiki](https://github.com/danielwilczak101/EasyNN/wiki).


%prep
%autosetup -n EasyNN-0.2.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-EasyNN -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.2-1
- Package Spec generated