1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
%global _empty_manifest_terminate_build 0
Name: python-edc-randomization
Version: 0.3.45
Release: 1
Summary: Randomization classes for clinicedc/edc
License: GPL license, see LICENSE
URL: https://github.com/clinicedc/edc-randomization
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b1/6e/c958aaac83febe90c0943511540a31d9cf18787bcc866dd9add9b9ff4b5d/edc-randomization-0.3.45.tar.gz
BuildArch: noarch
%description
Randomization objects for clinicedc projects
Overview
++++++++
The ``Randomizer`` class emulates the randomization of a clincial trial participant in
realtime. This module doesn't actually `randomize` in realtime. Instead, a CSV file is
prepared in advance by the statistician. This CSV file lists the order in which subjects
are to be randomized. The ``Randomizer`` class initially imports the entire list in order
into a ``model``. When a subject is to be randomized, the ``Randomizer`` class selects
the next available row from the model.
A very basic ``randomization_list.csv`` prepared in advance might look like this::
site_name,sid,assignment
temeke,1000,active
temeke,1001,active
temeke,1002,placebo
temeke,1003,active
temeke,1004,placebo
temeke,1005,placebo
For large multisite trials this may be thousands of lines ordered using some type of block
randomization.
This module will import (only once) all rows from the CSV file into a model. The ``Randomizer``
class selects and allocates in order by site_name one row per participant from the model.
randomizer_cls = site_randomizers.get("default")
randomizer_cls.randomize(subject_identifier=subject_identifier, ...)
# or just:
site_randomizers.randomize("default", subject_identifier=subject_identifier, ...)
Usually, the ``Randomizer`` class is instantiated in a ``signal`` once the subject's
eligibility is confirmed and the subject's informed consent is submitted. A
`signal` attached to the subject's informed consent is a good place to do this assuming the sequence
of events are 1) pass eligibility criteria, 2) complete informed consent, 3) `randomize` and
issue study identifier 4) start baseline visit.
@receiver(
post_save,
weak=False,
sender=SubjectConsent,
dispatch_uid="subject_consent_on_post_save",
)
def subject_consent_on_post_save(sender, instance, raw, created, **kwargs):
if not raw:
if created:
# randomize
site_randomizers.randomize(
"default",
subject_identifier=instance.subject_identifier,
report_datetime=instance.consent_datetime,
site=instance.site,
user=instance.user_created,
)
Registering a randomizer
++++++++++++++++++++++++
The default ``Randomizer`` class is ``edc_randomization.randomizer.Randomizer``. Unless you
indicate otherwise, it will be automatically registered with the site controller,
``site_randomizers`` with the name ``default``. It is recommended you access the ``Randomizer``
class through ``site_randomizers`` instead of directly importing.
randomizer_cls = site_randomizers.get("default")
Customizing the default randomizer
++++++++++++++++++++++++++++++++++
Some attributes of the default ``Randomizer`` class can be customized using ``settings`` attributes:
EDC_RANDOMIZATION_LIST_PATH = 'path/to/csv_file'
EDC_RANDOMIZATION_ASSIGNMENT_MAP = {
"intervention": 1,
"control": 2,
}
EDC_RANDOMIZATION_ASSIGNMENT_DESCRIPTION_MAP = {
"intervention": "Fluconazole plus flucytosine",
"control": "Fluconazole"
}
Creating a custom randomizer
++++++++++++++++++++++++++++
If you need to customize further, create a custom ``Randomizer`` class.
In the example below, ``gender`` is added for a trial stratified by ``gender``.
Custom ``Randomizer`` classes live in ``randomizers.py`` in the root of your app. The
``site_randomizers`` controller will ``autodiscover`` them.
# my_app/randomizers.py
@register()
class MyRandomizer(Randomizer):
name = "my_randomizer"
model = "edc_randomization.myrandomizationlist"
randomization_list_path = tmpdir
assignment_map = {"Intervention": 1, "Control": 0}
assignment_description_map = {"Intervention": "Fluconazole plus flucytosine", "Control": "Fluconazole"}
extra_csv_fieldnames = ["gender"]
def __init__(self, gender=None, **kwargs):
self.gender = gender
super().__init__(**kwargs)
@property
def extra_required_instance_attrs(self):
return dict(gender=self.gender)
@property
def extra_model_obj_options(self):
return dict(gender=self.gender)
@classmethod
def get_extra_list_display(cls):
return [(4, "gender")]
The ``register()`` decorator registers the custom class with ``site_randomizers``.
With a custom randomizer, the default ``Randomizer`` class is no longer needed,
update settings to prevent the default class from registering.
Use the settings attribute:
EDC_RANDOMIZATION_REGISTER_DEFAULT_RANDOMIZER = False
Confirm this by checking the ``site_randomizers``:
>>> randomizer_cls = site_randomizers.get("default")
NotRegistered: A Randomizer class by this name ...
>>> randomizer_cls = site_randomizers.get("my_randomizer")
>>> randomizer_cls.name
"my_randomizer"
Manually Importing from CSV
+++++++++++++++++++++++++++
A ``Randomizer`` class will call ``import_list`` when it is instantiated
for the first time. If you want to load the CSV file manually,
import the ``Randomizer`` class and call ``import_list()``.
>>> randomizer_cls = site_randomizers.get("my_randomizer")
>>> randomizer_cls.import_list()
Import CSV data
Randomizer:
- Name: my_randomizer
- Assignments: {'active': 1, 'placebo': 2}
- Model: edc_randomization.myrandomizationlist
- Path: /home/me/.etc/randomization_list.csv
- Imported 5 SIDs for randomizer `my_randomizer` into model `edc_randomization.myrandomizationlist`
from /home/me/.etc/randomization_list.csv.
- Verified OK.
Manually Export to CSV
++++++++++++++++++++++
>>> from edc_randomization.utils import export_randomization_list
>>> export_randomization_list(randomizer_name="default",path="~/", username="erikvw")
If the user does not have permissions to view the randomizationlist table, a ``RandomizationListExporterError`` will be raised:
RandomizationListExporterError: User `erikvw` does not have permission to view 'edc_randomization.randomizationlist'
%package -n python3-edc-randomization
Summary: Randomization classes for clinicedc/edc
Provides: python-edc-randomization
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-edc-randomization
Randomization objects for clinicedc projects
Overview
++++++++
The ``Randomizer`` class emulates the randomization of a clincial trial participant in
realtime. This module doesn't actually `randomize` in realtime. Instead, a CSV file is
prepared in advance by the statistician. This CSV file lists the order in which subjects
are to be randomized. The ``Randomizer`` class initially imports the entire list in order
into a ``model``. When a subject is to be randomized, the ``Randomizer`` class selects
the next available row from the model.
A very basic ``randomization_list.csv`` prepared in advance might look like this::
site_name,sid,assignment
temeke,1000,active
temeke,1001,active
temeke,1002,placebo
temeke,1003,active
temeke,1004,placebo
temeke,1005,placebo
For large multisite trials this may be thousands of lines ordered using some type of block
randomization.
This module will import (only once) all rows from the CSV file into a model. The ``Randomizer``
class selects and allocates in order by site_name one row per participant from the model.
randomizer_cls = site_randomizers.get("default")
randomizer_cls.randomize(subject_identifier=subject_identifier, ...)
# or just:
site_randomizers.randomize("default", subject_identifier=subject_identifier, ...)
Usually, the ``Randomizer`` class is instantiated in a ``signal`` once the subject's
eligibility is confirmed and the subject's informed consent is submitted. A
`signal` attached to the subject's informed consent is a good place to do this assuming the sequence
of events are 1) pass eligibility criteria, 2) complete informed consent, 3) `randomize` and
issue study identifier 4) start baseline visit.
@receiver(
post_save,
weak=False,
sender=SubjectConsent,
dispatch_uid="subject_consent_on_post_save",
)
def subject_consent_on_post_save(sender, instance, raw, created, **kwargs):
if not raw:
if created:
# randomize
site_randomizers.randomize(
"default",
subject_identifier=instance.subject_identifier,
report_datetime=instance.consent_datetime,
site=instance.site,
user=instance.user_created,
)
Registering a randomizer
++++++++++++++++++++++++
The default ``Randomizer`` class is ``edc_randomization.randomizer.Randomizer``. Unless you
indicate otherwise, it will be automatically registered with the site controller,
``site_randomizers`` with the name ``default``. It is recommended you access the ``Randomizer``
class through ``site_randomizers`` instead of directly importing.
randomizer_cls = site_randomizers.get("default")
Customizing the default randomizer
++++++++++++++++++++++++++++++++++
Some attributes of the default ``Randomizer`` class can be customized using ``settings`` attributes:
EDC_RANDOMIZATION_LIST_PATH = 'path/to/csv_file'
EDC_RANDOMIZATION_ASSIGNMENT_MAP = {
"intervention": 1,
"control": 2,
}
EDC_RANDOMIZATION_ASSIGNMENT_DESCRIPTION_MAP = {
"intervention": "Fluconazole plus flucytosine",
"control": "Fluconazole"
}
Creating a custom randomizer
++++++++++++++++++++++++++++
If you need to customize further, create a custom ``Randomizer`` class.
In the example below, ``gender`` is added for a trial stratified by ``gender``.
Custom ``Randomizer`` classes live in ``randomizers.py`` in the root of your app. The
``site_randomizers`` controller will ``autodiscover`` them.
# my_app/randomizers.py
@register()
class MyRandomizer(Randomizer):
name = "my_randomizer"
model = "edc_randomization.myrandomizationlist"
randomization_list_path = tmpdir
assignment_map = {"Intervention": 1, "Control": 0}
assignment_description_map = {"Intervention": "Fluconazole plus flucytosine", "Control": "Fluconazole"}
extra_csv_fieldnames = ["gender"]
def __init__(self, gender=None, **kwargs):
self.gender = gender
super().__init__(**kwargs)
@property
def extra_required_instance_attrs(self):
return dict(gender=self.gender)
@property
def extra_model_obj_options(self):
return dict(gender=self.gender)
@classmethod
def get_extra_list_display(cls):
return [(4, "gender")]
The ``register()`` decorator registers the custom class with ``site_randomizers``.
With a custom randomizer, the default ``Randomizer`` class is no longer needed,
update settings to prevent the default class from registering.
Use the settings attribute:
EDC_RANDOMIZATION_REGISTER_DEFAULT_RANDOMIZER = False
Confirm this by checking the ``site_randomizers``:
>>> randomizer_cls = site_randomizers.get("default")
NotRegistered: A Randomizer class by this name ...
>>> randomizer_cls = site_randomizers.get("my_randomizer")
>>> randomizer_cls.name
"my_randomizer"
Manually Importing from CSV
+++++++++++++++++++++++++++
A ``Randomizer`` class will call ``import_list`` when it is instantiated
for the first time. If you want to load the CSV file manually,
import the ``Randomizer`` class and call ``import_list()``.
>>> randomizer_cls = site_randomizers.get("my_randomizer")
>>> randomizer_cls.import_list()
Import CSV data
Randomizer:
- Name: my_randomizer
- Assignments: {'active': 1, 'placebo': 2}
- Model: edc_randomization.myrandomizationlist
- Path: /home/me/.etc/randomization_list.csv
- Imported 5 SIDs for randomizer `my_randomizer` into model `edc_randomization.myrandomizationlist`
from /home/me/.etc/randomization_list.csv.
- Verified OK.
Manually Export to CSV
++++++++++++++++++++++
>>> from edc_randomization.utils import export_randomization_list
>>> export_randomization_list(randomizer_name="default",path="~/", username="erikvw")
If the user does not have permissions to view the randomizationlist table, a ``RandomizationListExporterError`` will be raised:
RandomizationListExporterError: User `erikvw` does not have permission to view 'edc_randomization.randomizationlist'
%package help
Summary: Development documents and examples for edc-randomization
Provides: python3-edc-randomization-doc
%description help
Randomization objects for clinicedc projects
Overview
++++++++
The ``Randomizer`` class emulates the randomization of a clincial trial participant in
realtime. This module doesn't actually `randomize` in realtime. Instead, a CSV file is
prepared in advance by the statistician. This CSV file lists the order in which subjects
are to be randomized. The ``Randomizer`` class initially imports the entire list in order
into a ``model``. When a subject is to be randomized, the ``Randomizer`` class selects
the next available row from the model.
A very basic ``randomization_list.csv`` prepared in advance might look like this::
site_name,sid,assignment
temeke,1000,active
temeke,1001,active
temeke,1002,placebo
temeke,1003,active
temeke,1004,placebo
temeke,1005,placebo
For large multisite trials this may be thousands of lines ordered using some type of block
randomization.
This module will import (only once) all rows from the CSV file into a model. The ``Randomizer``
class selects and allocates in order by site_name one row per participant from the model.
randomizer_cls = site_randomizers.get("default")
randomizer_cls.randomize(subject_identifier=subject_identifier, ...)
# or just:
site_randomizers.randomize("default", subject_identifier=subject_identifier, ...)
Usually, the ``Randomizer`` class is instantiated in a ``signal`` once the subject's
eligibility is confirmed and the subject's informed consent is submitted. A
`signal` attached to the subject's informed consent is a good place to do this assuming the sequence
of events are 1) pass eligibility criteria, 2) complete informed consent, 3) `randomize` and
issue study identifier 4) start baseline visit.
@receiver(
post_save,
weak=False,
sender=SubjectConsent,
dispatch_uid="subject_consent_on_post_save",
)
def subject_consent_on_post_save(sender, instance, raw, created, **kwargs):
if not raw:
if created:
# randomize
site_randomizers.randomize(
"default",
subject_identifier=instance.subject_identifier,
report_datetime=instance.consent_datetime,
site=instance.site,
user=instance.user_created,
)
Registering a randomizer
++++++++++++++++++++++++
The default ``Randomizer`` class is ``edc_randomization.randomizer.Randomizer``. Unless you
indicate otherwise, it will be automatically registered with the site controller,
``site_randomizers`` with the name ``default``. It is recommended you access the ``Randomizer``
class through ``site_randomizers`` instead of directly importing.
randomizer_cls = site_randomizers.get("default")
Customizing the default randomizer
++++++++++++++++++++++++++++++++++
Some attributes of the default ``Randomizer`` class can be customized using ``settings`` attributes:
EDC_RANDOMIZATION_LIST_PATH = 'path/to/csv_file'
EDC_RANDOMIZATION_ASSIGNMENT_MAP = {
"intervention": 1,
"control": 2,
}
EDC_RANDOMIZATION_ASSIGNMENT_DESCRIPTION_MAP = {
"intervention": "Fluconazole plus flucytosine",
"control": "Fluconazole"
}
Creating a custom randomizer
++++++++++++++++++++++++++++
If you need to customize further, create a custom ``Randomizer`` class.
In the example below, ``gender`` is added for a trial stratified by ``gender``.
Custom ``Randomizer`` classes live in ``randomizers.py`` in the root of your app. The
``site_randomizers`` controller will ``autodiscover`` them.
# my_app/randomizers.py
@register()
class MyRandomizer(Randomizer):
name = "my_randomizer"
model = "edc_randomization.myrandomizationlist"
randomization_list_path = tmpdir
assignment_map = {"Intervention": 1, "Control": 0}
assignment_description_map = {"Intervention": "Fluconazole plus flucytosine", "Control": "Fluconazole"}
extra_csv_fieldnames = ["gender"]
def __init__(self, gender=None, **kwargs):
self.gender = gender
super().__init__(**kwargs)
@property
def extra_required_instance_attrs(self):
return dict(gender=self.gender)
@property
def extra_model_obj_options(self):
return dict(gender=self.gender)
@classmethod
def get_extra_list_display(cls):
return [(4, "gender")]
The ``register()`` decorator registers the custom class with ``site_randomizers``.
With a custom randomizer, the default ``Randomizer`` class is no longer needed,
update settings to prevent the default class from registering.
Use the settings attribute:
EDC_RANDOMIZATION_REGISTER_DEFAULT_RANDOMIZER = False
Confirm this by checking the ``site_randomizers``:
>>> randomizer_cls = site_randomizers.get("default")
NotRegistered: A Randomizer class by this name ...
>>> randomizer_cls = site_randomizers.get("my_randomizer")
>>> randomizer_cls.name
"my_randomizer"
Manually Importing from CSV
+++++++++++++++++++++++++++
A ``Randomizer`` class will call ``import_list`` when it is instantiated
for the first time. If you want to load the CSV file manually,
import the ``Randomizer`` class and call ``import_list()``.
>>> randomizer_cls = site_randomizers.get("my_randomizer")
>>> randomizer_cls.import_list()
Import CSV data
Randomizer:
- Name: my_randomizer
- Assignments: {'active': 1, 'placebo': 2}
- Model: edc_randomization.myrandomizationlist
- Path: /home/me/.etc/randomization_list.csv
- Imported 5 SIDs for randomizer `my_randomizer` into model `edc_randomization.myrandomizationlist`
from /home/me/.etc/randomization_list.csv.
- Verified OK.
Manually Export to CSV
++++++++++++++++++++++
>>> from edc_randomization.utils import export_randomization_list
>>> export_randomization_list(randomizer_name="default",path="~/", username="erikvw")
If the user does not have permissions to view the randomizationlist table, a ``RandomizationListExporterError`` will be raised:
RandomizationListExporterError: User `erikvw` does not have permission to view 'edc_randomization.randomizationlist'
%prep
%autosetup -n edc-randomization-0.3.45
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-edc-randomization -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.45-1
- Package Spec generated
|