summaryrefslogtreecommitdiff
path: root/python-emmv.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-emmv.spec')
-rw-r--r--python-emmv.spec268
1 files changed, 268 insertions, 0 deletions
diff --git a/python-emmv.spec b/python-emmv.spec
new file mode 100644
index 0000000..d318b50
--- /dev/null
+++ b/python-emmv.spec
@@ -0,0 +1,268 @@
+%global _empty_manifest_terminate_build 0
+Name: python-emmv
+Version: 0.0.4
+Release: 1
+Summary: Metrics for unsupervised anomaly detection models
+License: MIT License
+URL: https://github.com/christian-oleary/emmv
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/37/1f/2e9f578680b98196e3aef716e78a63e66cc4b9f39c32563afa7effadce35/emmv-0.0.4.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-pandas
+Requires: python3-setuptools
+Requires: python3-scikit-learn
+
+%description
+# EMMV
+
+Implementation of EM/MV metrics based on N. Goix et al.
+
+This is a means of evaluating anomaly detection models without anomaly labels
+
+## Installation
+
+```shell
+pip install emmv
+```
+
+## Example Use
+
+```python
+from emmv import emmv_scores
+
+test_scores = emmv_scores(model, features)
+```
+
+- Where 'model' is your **trained** scikit-learn, PyOD, or PyCaret model
+- Where 'features' is a 2D DataFrame of features (the *X* matrix)
+
+Example resulting object:
+
+```json
+{
+ "em": 0.77586,
+ "mv": 0.25367
+}
+```
+
+If you are using models without a built-in *decision_function* (e.g. Keras or ADTK models), then you need to specify an anomaly scoring function. Please see examples in the examples folder.
+
+## Running Examples
+
+```shell
+pip install .
+python ./examples/sklearn_example.py
+```
+
+## Interpreting scores
+
+- The best model should have the **highest** Excess Mass score
+- The best model should have the **lowest** Mass Volume score
+- Probably easiest to just use one of the metrics
+- Extreme values are possible
+
+## Contact
+
+Please feel free to get in touch at christian.oleary@mtu.ie
+
+## Citation
+
+```latex
+@Misc{emmv,
+author = {Christian O'Leary},
+title = {EMMV library},
+howpublished = {\url{https://pypi.org/project/emmv/}},
+year = {2021--2021}
+}
+```
+
+
+
+
+%package -n python3-emmv
+Summary: Metrics for unsupervised anomaly detection models
+Provides: python-emmv
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-emmv
+# EMMV
+
+Implementation of EM/MV metrics based on N. Goix et al.
+
+This is a means of evaluating anomaly detection models without anomaly labels
+
+## Installation
+
+```shell
+pip install emmv
+```
+
+## Example Use
+
+```python
+from emmv import emmv_scores
+
+test_scores = emmv_scores(model, features)
+```
+
+- Where 'model' is your **trained** scikit-learn, PyOD, or PyCaret model
+- Where 'features' is a 2D DataFrame of features (the *X* matrix)
+
+Example resulting object:
+
+```json
+{
+ "em": 0.77586,
+ "mv": 0.25367
+}
+```
+
+If you are using models without a built-in *decision_function* (e.g. Keras or ADTK models), then you need to specify an anomaly scoring function. Please see examples in the examples folder.
+
+## Running Examples
+
+```shell
+pip install .
+python ./examples/sklearn_example.py
+```
+
+## Interpreting scores
+
+- The best model should have the **highest** Excess Mass score
+- The best model should have the **lowest** Mass Volume score
+- Probably easiest to just use one of the metrics
+- Extreme values are possible
+
+## Contact
+
+Please feel free to get in touch at christian.oleary@mtu.ie
+
+## Citation
+
+```latex
+@Misc{emmv,
+author = {Christian O'Leary},
+title = {EMMV library},
+howpublished = {\url{https://pypi.org/project/emmv/}},
+year = {2021--2021}
+}
+```
+
+
+
+
+%package help
+Summary: Development documents and examples for emmv
+Provides: python3-emmv-doc
+%description help
+# EMMV
+
+Implementation of EM/MV metrics based on N. Goix et al.
+
+This is a means of evaluating anomaly detection models without anomaly labels
+
+## Installation
+
+```shell
+pip install emmv
+```
+
+## Example Use
+
+```python
+from emmv import emmv_scores
+
+test_scores = emmv_scores(model, features)
+```
+
+- Where 'model' is your **trained** scikit-learn, PyOD, or PyCaret model
+- Where 'features' is a 2D DataFrame of features (the *X* matrix)
+
+Example resulting object:
+
+```json
+{
+ "em": 0.77586,
+ "mv": 0.25367
+}
+```
+
+If you are using models without a built-in *decision_function* (e.g. Keras or ADTK models), then you need to specify an anomaly scoring function. Please see examples in the examples folder.
+
+## Running Examples
+
+```shell
+pip install .
+python ./examples/sklearn_example.py
+```
+
+## Interpreting scores
+
+- The best model should have the **highest** Excess Mass score
+- The best model should have the **lowest** Mass Volume score
+- Probably easiest to just use one of the metrics
+- Extreme values are possible
+
+## Contact
+
+Please feel free to get in touch at christian.oleary@mtu.ie
+
+## Citation
+
+```latex
+@Misc{emmv,
+author = {Christian O'Leary},
+title = {EMMV library},
+howpublished = {\url{https://pypi.org/project/emmv/}},
+year = {2021--2021}
+}
+```
+
+
+
+
+%prep
+%autosetup -n emmv-0.0.4
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-emmv -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.4-1
+- Package Spec generated