1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
|
%global _empty_manifest_terminate_build 0
Name: python-epitoolkit
Version: 0.2.6
Release: 1
Summary: EpiToolkit is a set of tools useful in the analysis of data from EPIC / 450K microarrays.
License: MIT
URL: https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a0/9e/d65d7b009fe2454a0db42cd416c3d199511450af9c58745d01c3c679507b/epitoolkit-0.2.6.tar.gz
BuildArch: noarch
Requires: python3-pandas
Requires: python3-numpy
Requires: python3-seaborn
Requires: python3-matplotlib
Requires: python3-plotly
Requires: python3-scipy
Requires: python3-tqdm
Requires: python3-pathlib
Requires: python3-autopep8
Requires: python3-Sphinx
%description
# EpiGenToolKit
Is a small library created to deal with data from `EPIC / 450K` microarrays. The tool allows to:
a) Simply visualize methylation levels of specific CpG or genomic region.
b) Perform enrichment analysis of a selected subset of CpG against the whole array. In this type of analysis expected frequency [%] (based on mynorm) of genomic regions is compared to observed (based on provided cpgs set), results are comapred using chi-square test.
# How to start?
a) using env
```
python -m venv env
source env/bin/activate # Windows: env\Scripts\activate
pip install epitoolkit
```
b) using poetry
```
poetry new .
poetry add epitoolkit
```
c) or just clone the repository:
```
git clone https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit.git
cd EpiGenToolKit && poetry install
```
# How to use?
## Visualization
To visualize single **CpG** site or specific genomic region initialize **Visualise** object:
```
from epitoolkit.tools import Visualize
viz = Visualize(manifest=<path_to_array_manifest>, # path to manifest file
mynorm=<path_to_mynorm_file>, # path to mynorm file
poi=<path_to_poi_file>, # path to poi file
poi_col=<column_name> # name of column containing sample phenotype
skiprows=0) # many manifest contains headers, set skiprows argument to ignore them.
```
all files must have *.csv extension, mynorm must contain sample names as `columns` and cpgs as `rows`, the proper
EPIC manifest may be downloaded from [here](https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html),
poi file must contain sample names `rows` (only samples overlapped between poi and mynorm will be used)
and POI (phenotype of interest) column containing names of phenotype e.g. Control and Case.
To visualize single CpG:
```
viz.plot_CpG("cg07881041", # cpg ID
static=False, # plot type static / interactive [default]
height=400, # plot size [default]
width=700, # plot size [default]
title="", # plot title [default]
legend_title="", # legend title [default]
font_size=22, # font size [default]
show_legend=True, # False to hide legedn [default]
x_axis_label="CpG", # x axsis label [default]
category_order=["Cohort 1", "Cohort 2], # box order [default]
y_axis_label="beta-values") # y axis label [default]
```
> NOTE: most of those arguments are default! So you don't need to specify most of them!

To visualize specific genomic region:
```
vis.plot_Range(chr=17, start=5999, end=7000)
```
> NOTE: please note that all arguments available in `viz.plot_CpG` are also in `plot_Range`

To visualize specific CpGs in genomic order, instead of whole region, just pass collection of CpGs:
```
viz.plot_Range(cpgs=["cg04594855", "cg19812938", "cg05451842"]
```

To save plots use *export* argument, for instance:
```
viz.plot_Range(chr=17, start=5999, end=6770, export="plot.html") # if static = False only html format is supported if static = True, use png extension.
```
### Enrichment analysis
To perform enrichment analysis against any type of genomic region specified in the manifest file, the user needs to initialize **EnrichemntAnalysis** object.
```
from src.epitoolkit.tools import EnrichmentAnalysis
ea = EnrichmentAnalysis(manifest=<path_to_array_manifest>,
mynorm=<path_to_mynorm_file>)
```
or if `Visualize` object already exists use `load` method (this approach makes you not have to load the data again):
```
ea = EnrichmentAnalysis.load(<Visualize_object_name>)
```
To start analysis:
```
ea.enrichmentAnalysis(categories_to_analyse=["UCSC_RefGene_Group", "Relation_to_UCSC_CpG_Island"], # list of categories to analyse
cpgs=cpgs) # list of cpgs to analyse against background
```

%package -n python3-epitoolkit
Summary: EpiToolkit is a set of tools useful in the analysis of data from EPIC / 450K microarrays.
Provides: python-epitoolkit
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-epitoolkit
# EpiGenToolKit
Is a small library created to deal with data from `EPIC / 450K` microarrays. The tool allows to:
a) Simply visualize methylation levels of specific CpG or genomic region.
b) Perform enrichment analysis of a selected subset of CpG against the whole array. In this type of analysis expected frequency [%] (based on mynorm) of genomic regions is compared to observed (based on provided cpgs set), results are comapred using chi-square test.
# How to start?
a) using env
```
python -m venv env
source env/bin/activate # Windows: env\Scripts\activate
pip install epitoolkit
```
b) using poetry
```
poetry new .
poetry add epitoolkit
```
c) or just clone the repository:
```
git clone https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit.git
cd EpiGenToolKit && poetry install
```
# How to use?
## Visualization
To visualize single **CpG** site or specific genomic region initialize **Visualise** object:
```
from epitoolkit.tools import Visualize
viz = Visualize(manifest=<path_to_array_manifest>, # path to manifest file
mynorm=<path_to_mynorm_file>, # path to mynorm file
poi=<path_to_poi_file>, # path to poi file
poi_col=<column_name> # name of column containing sample phenotype
skiprows=0) # many manifest contains headers, set skiprows argument to ignore them.
```
all files must have *.csv extension, mynorm must contain sample names as `columns` and cpgs as `rows`, the proper
EPIC manifest may be downloaded from [here](https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html),
poi file must contain sample names `rows` (only samples overlapped between poi and mynorm will be used)
and POI (phenotype of interest) column containing names of phenotype e.g. Control and Case.
To visualize single CpG:
```
viz.plot_CpG("cg07881041", # cpg ID
static=False, # plot type static / interactive [default]
height=400, # plot size [default]
width=700, # plot size [default]
title="", # plot title [default]
legend_title="", # legend title [default]
font_size=22, # font size [default]
show_legend=True, # False to hide legedn [default]
x_axis_label="CpG", # x axsis label [default]
category_order=["Cohort 1", "Cohort 2], # box order [default]
y_axis_label="beta-values") # y axis label [default]
```
> NOTE: most of those arguments are default! So you don't need to specify most of them!

To visualize specific genomic region:
```
vis.plot_Range(chr=17, start=5999, end=7000)
```
> NOTE: please note that all arguments available in `viz.plot_CpG` are also in `plot_Range`

To visualize specific CpGs in genomic order, instead of whole region, just pass collection of CpGs:
```
viz.plot_Range(cpgs=["cg04594855", "cg19812938", "cg05451842"]
```

To save plots use *export* argument, for instance:
```
viz.plot_Range(chr=17, start=5999, end=6770, export="plot.html") # if static = False only html format is supported if static = True, use png extension.
```
### Enrichment analysis
To perform enrichment analysis against any type of genomic region specified in the manifest file, the user needs to initialize **EnrichemntAnalysis** object.
```
from src.epitoolkit.tools import EnrichmentAnalysis
ea = EnrichmentAnalysis(manifest=<path_to_array_manifest>,
mynorm=<path_to_mynorm_file>)
```
or if `Visualize` object already exists use `load` method (this approach makes you not have to load the data again):
```
ea = EnrichmentAnalysis.load(<Visualize_object_name>)
```
To start analysis:
```
ea.enrichmentAnalysis(categories_to_analyse=["UCSC_RefGene_Group", "Relation_to_UCSC_CpG_Island"], # list of categories to analyse
cpgs=cpgs) # list of cpgs to analyse against background
```

%package help
Summary: Development documents and examples for epitoolkit
Provides: python3-epitoolkit-doc
%description help
# EpiGenToolKit
Is a small library created to deal with data from `EPIC / 450K` microarrays. The tool allows to:
a) Simply visualize methylation levels of specific CpG or genomic region.
b) Perform enrichment analysis of a selected subset of CpG against the whole array. In this type of analysis expected frequency [%] (based on mynorm) of genomic regions is compared to observed (based on provided cpgs set), results are comapred using chi-square test.
# How to start?
a) using env
```
python -m venv env
source env/bin/activate # Windows: env\Scripts\activate
pip install epitoolkit
```
b) using poetry
```
poetry new .
poetry add epitoolkit
```
c) or just clone the repository:
```
git clone https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit.git
cd EpiGenToolKit && poetry install
```
# How to use?
## Visualization
To visualize single **CpG** site or specific genomic region initialize **Visualise** object:
```
from epitoolkit.tools import Visualize
viz = Visualize(manifest=<path_to_array_manifest>, # path to manifest file
mynorm=<path_to_mynorm_file>, # path to mynorm file
poi=<path_to_poi_file>, # path to poi file
poi_col=<column_name> # name of column containing sample phenotype
skiprows=0) # many manifest contains headers, set skiprows argument to ignore them.
```
all files must have *.csv extension, mynorm must contain sample names as `columns` and cpgs as `rows`, the proper
EPIC manifest may be downloaded from [here](https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html),
poi file must contain sample names `rows` (only samples overlapped between poi and mynorm will be used)
and POI (phenotype of interest) column containing names of phenotype e.g. Control and Case.
To visualize single CpG:
```
viz.plot_CpG("cg07881041", # cpg ID
static=False, # plot type static / interactive [default]
height=400, # plot size [default]
width=700, # plot size [default]
title="", # plot title [default]
legend_title="", # legend title [default]
font_size=22, # font size [default]
show_legend=True, # False to hide legedn [default]
x_axis_label="CpG", # x axsis label [default]
category_order=["Cohort 1", "Cohort 2], # box order [default]
y_axis_label="beta-values") # y axis label [default]
```
> NOTE: most of those arguments are default! So you don't need to specify most of them!

To visualize specific genomic region:
```
vis.plot_Range(chr=17, start=5999, end=7000)
```
> NOTE: please note that all arguments available in `viz.plot_CpG` are also in `plot_Range`

To visualize specific CpGs in genomic order, instead of whole region, just pass collection of CpGs:
```
viz.plot_Range(cpgs=["cg04594855", "cg19812938", "cg05451842"]
```

To save plots use *export* argument, for instance:
```
viz.plot_Range(chr=17, start=5999, end=6770, export="plot.html") # if static = False only html format is supported if static = True, use png extension.
```
### Enrichment analysis
To perform enrichment analysis against any type of genomic region specified in the manifest file, the user needs to initialize **EnrichemntAnalysis** object.
```
from src.epitoolkit.tools import EnrichmentAnalysis
ea = EnrichmentAnalysis(manifest=<path_to_array_manifest>,
mynorm=<path_to_mynorm_file>)
```
or if `Visualize` object already exists use `load` method (this approach makes you not have to load the data again):
```
ea = EnrichmentAnalysis.load(<Visualize_object_name>)
```
To start analysis:
```
ea.enrichmentAnalysis(categories_to_analyse=["UCSC_RefGene_Group", "Relation_to_UCSC_CpG_Island"], # list of categories to analyse
cpgs=cpgs) # list of cpgs to analyse against background
```

%prep
%autosetup -n epitoolkit-0.2.6
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-epitoolkit -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.6-1
- Package Spec generated
|