1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
|
%global _empty_manifest_terminate_build 0
Name: python-etna-ts
Version: 1.3.1
Release: 1
Summary: ETNA is the first python open source framework of Tinkoff.ru AI Center. It is designed to make working with time series simple, productive, and fun.
License: Apache 2.0
URL: https://github.com/tinkoff-ai/etna-ts
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a7/be/b7e2e3cbc2e7dd0603c42aa4a1be3e4852313eef86abf2c1c4eb3d71c408/etna-ts-1.3.1.tar.gz
BuildArch: noarch
Requires: python3-scikit-learn
Requires: python3-pandas
Requires: python3-catboost
Requires: python3-ruptures
Requires: python3-numba
Requires: python3-seaborn
Requires: python3-statsmodels
Requires: python3-dill
Requires: python3-toml
Requires: python3-loguru
Requires: python3-saxpy
Requires: python3-hydra-slayer
Requires: python3-typer
Requires: python3-prophet
Requires: python3-torch
Requires: python3-pytorch-forecasting
Requires: python3-wandb
Requires: python3-sphinx-mathjax-offline
Requires: python3-nbsphinx
Requires: python3-Sphinx
Requires: python3-numpydoc
Requires: python3-sphinx-rtd-theme
Requires: python3-myst-parser
Requires: python3-GitPython
Requires: python3-pytest
Requires: python3-coverage
Requires: python3-pytest-cov
Requires: python3-black
Requires: python3-isort
Requires: python3-flake8
Requires: python3-pep8-naming
Requires: python3-flake8-docstrings
Requires: python3-mypy
Requires: python3-types-PyYAML
Requires: python3-click
Requires: python3-semver
Requires: python3-ipywidgets
Requires: python3-jupyter
Requires: python3-nbconvert
Requires: python3-omegaconf
%description
# ETNA Time Series Library
[](https://pypi.org/project/etna-ts/)
[](https://pepy.tech/project/etna-ts)
[](https://codecov.io/gh/tinkoff-ai/etna-ts)
[](https://t.me/etna_support)
[Homepage](https://etna.tinkoff.ru) |
[Documentation](https://etna-docs.netlify.app/) |
[Tutorials](https://github.com/tinkoff-ai/etna-ts/tree/master/examples) |
[Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md) |
[Release Notes](https://github.com/tinkoff-ai/etna-ts/releases)
ETNA is an easy-to-use time series forecasting framework.
It includes built in toolkits for time series preprocessing, feature generation,
a variety of predictive models with unified interface - from classic machine learning
to SOTA neural networks, models combination methods and smart backtesting.
ETNA is designed to make working with time series simple, productive, and fun.
ETNA is the first python open source framework of
[Tinkoff.ru](https://www.tinkoff.ru/eng/)
Artificial Intelligence Center.
The library started as an internal product in our company -
we use it in over 10+ projects now, so we often release updates.
Contributions are welcome - check our [Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md).
## Installation
ETNA is on [PyPI](https://pypi.org/project/etna-ts), so you can use `pip` to install it.
```bash
pip install --upgrade pip
pip install etna-ts
```
## Get started
Here's some example code for a quick start.
```python
import pandas as pd
from etna.datasets.tsdataset import TSDataset
from etna.models import ProphetModel
# Read the data
df = pd.read_csv("examples/data/example_dataset.csv")
# Create a TSDataset
df = TSDataset.to_dataset(df)
ts = TSDataset(df, freq="D")
# Choose a horizon
HORIZON = 8
# Fit the model
model = ProphetModel()
model.fit(ts)
# Make the forecast
future_ts = ts.make_future(HORIZON)
forecast_ts = model.forecast(future_ts)
```
## Tutorials
We have also prepared a set of tutorials for an easy introduction:
| Notebook | Interactive launch |
|:----------|------:|
| [Get started](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/get_started.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/get_started.ipynb) |
| [Backtest](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/backtest.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/backtest.ipynb) |
| [EDA](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/EDA.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/EDA.ipynb) |
| [Outliers](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/outliers.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/outliers.ipynb) |
| [Clustering](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/clustering.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/clustering.ipynb) |
| [Deep learning models](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/NN_examples.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/NN_examples.ipynb) |
| [Ensembles](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/ensembles.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/ensembles.ipynb) |
## Documentation
ETNA documentation is available [here](https://etna-docs.netlify.app/).
## Acknowledgments
### ETNA.Team
[Alekseev Andrey](https://github.com/iKintosh),
[Shenshina Julia](https://github.com/julia-shenshina),
[Gabdushev Martin](https://github.com/martins0n),
[Kolesnikov Sergey](https://github.com/Scitator),
[Bunin Dmitriy](https://github.com/Mr-Geekman),
[Chikov Aleksandr](https://github.com/alex-hse-repository),
[Barinov Nikita](https://github.com/diadorer),
[Romantsov Nikolay](https://github.com/WinstonDovlatov),
[Makhin Artem](https://github.com/Ama16),
[Denisov Vladislav](https://github.com/v-v-denisov),
[Mitskovets Ivan](https://github.com/imitskovets),
[Munirova Albina](https://github.com/albinamunirova)
### ETNA.Contributors
[Levashov Artem](https://github.com/soft1q),
[Podkidyshev Aleksey](https://github.com/alekseyen)
## License
Feel free to use our library in your commercial and private applications.
ETNA is covered by [Apache 2.0](/LICENSE).
Read more about this license [here](https://choosealicense.com/licenses/apache-2.0/)
%package -n python3-etna-ts
Summary: ETNA is the first python open source framework of Tinkoff.ru AI Center. It is designed to make working with time series simple, productive, and fun.
Provides: python-etna-ts
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-etna-ts
# ETNA Time Series Library
[](https://pypi.org/project/etna-ts/)
[](https://pepy.tech/project/etna-ts)
[](https://codecov.io/gh/tinkoff-ai/etna-ts)
[](https://t.me/etna_support)
[Homepage](https://etna.tinkoff.ru) |
[Documentation](https://etna-docs.netlify.app/) |
[Tutorials](https://github.com/tinkoff-ai/etna-ts/tree/master/examples) |
[Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md) |
[Release Notes](https://github.com/tinkoff-ai/etna-ts/releases)
ETNA is an easy-to-use time series forecasting framework.
It includes built in toolkits for time series preprocessing, feature generation,
a variety of predictive models with unified interface - from classic machine learning
to SOTA neural networks, models combination methods and smart backtesting.
ETNA is designed to make working with time series simple, productive, and fun.
ETNA is the first python open source framework of
[Tinkoff.ru](https://www.tinkoff.ru/eng/)
Artificial Intelligence Center.
The library started as an internal product in our company -
we use it in over 10+ projects now, so we often release updates.
Contributions are welcome - check our [Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md).
## Installation
ETNA is on [PyPI](https://pypi.org/project/etna-ts), so you can use `pip` to install it.
```bash
pip install --upgrade pip
pip install etna-ts
```
## Get started
Here's some example code for a quick start.
```python
import pandas as pd
from etna.datasets.tsdataset import TSDataset
from etna.models import ProphetModel
# Read the data
df = pd.read_csv("examples/data/example_dataset.csv")
# Create a TSDataset
df = TSDataset.to_dataset(df)
ts = TSDataset(df, freq="D")
# Choose a horizon
HORIZON = 8
# Fit the model
model = ProphetModel()
model.fit(ts)
# Make the forecast
future_ts = ts.make_future(HORIZON)
forecast_ts = model.forecast(future_ts)
```
## Tutorials
We have also prepared a set of tutorials for an easy introduction:
| Notebook | Interactive launch |
|:----------|------:|
| [Get started](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/get_started.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/get_started.ipynb) |
| [Backtest](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/backtest.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/backtest.ipynb) |
| [EDA](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/EDA.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/EDA.ipynb) |
| [Outliers](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/outliers.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/outliers.ipynb) |
| [Clustering](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/clustering.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/clustering.ipynb) |
| [Deep learning models](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/NN_examples.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/NN_examples.ipynb) |
| [Ensembles](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/ensembles.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/ensembles.ipynb) |
## Documentation
ETNA documentation is available [here](https://etna-docs.netlify.app/).
## Acknowledgments
### ETNA.Team
[Alekseev Andrey](https://github.com/iKintosh),
[Shenshina Julia](https://github.com/julia-shenshina),
[Gabdushev Martin](https://github.com/martins0n),
[Kolesnikov Sergey](https://github.com/Scitator),
[Bunin Dmitriy](https://github.com/Mr-Geekman),
[Chikov Aleksandr](https://github.com/alex-hse-repository),
[Barinov Nikita](https://github.com/diadorer),
[Romantsov Nikolay](https://github.com/WinstonDovlatov),
[Makhin Artem](https://github.com/Ama16),
[Denisov Vladislav](https://github.com/v-v-denisov),
[Mitskovets Ivan](https://github.com/imitskovets),
[Munirova Albina](https://github.com/albinamunirova)
### ETNA.Contributors
[Levashov Artem](https://github.com/soft1q),
[Podkidyshev Aleksey](https://github.com/alekseyen)
## License
Feel free to use our library in your commercial and private applications.
ETNA is covered by [Apache 2.0](/LICENSE).
Read more about this license [here](https://choosealicense.com/licenses/apache-2.0/)
%package help
Summary: Development documents and examples for etna-ts
Provides: python3-etna-ts-doc
%description help
# ETNA Time Series Library
[](https://pypi.org/project/etna-ts/)
[](https://pepy.tech/project/etna-ts)
[](https://codecov.io/gh/tinkoff-ai/etna-ts)
[](https://t.me/etna_support)
[Homepage](https://etna.tinkoff.ru) |
[Documentation](https://etna-docs.netlify.app/) |
[Tutorials](https://github.com/tinkoff-ai/etna-ts/tree/master/examples) |
[Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md) |
[Release Notes](https://github.com/tinkoff-ai/etna-ts/releases)
ETNA is an easy-to-use time series forecasting framework.
It includes built in toolkits for time series preprocessing, feature generation,
a variety of predictive models with unified interface - from classic machine learning
to SOTA neural networks, models combination methods and smart backtesting.
ETNA is designed to make working with time series simple, productive, and fun.
ETNA is the first python open source framework of
[Tinkoff.ru](https://www.tinkoff.ru/eng/)
Artificial Intelligence Center.
The library started as an internal product in our company -
we use it in over 10+ projects now, so we often release updates.
Contributions are welcome - check our [Contribution Guide](https://github.com/tinkoff-ai/etna-ts/blob/master/CONTRIBUTING.md).
## Installation
ETNA is on [PyPI](https://pypi.org/project/etna-ts), so you can use `pip` to install it.
```bash
pip install --upgrade pip
pip install etna-ts
```
## Get started
Here's some example code for a quick start.
```python
import pandas as pd
from etna.datasets.tsdataset import TSDataset
from etna.models import ProphetModel
# Read the data
df = pd.read_csv("examples/data/example_dataset.csv")
# Create a TSDataset
df = TSDataset.to_dataset(df)
ts = TSDataset(df, freq="D")
# Choose a horizon
HORIZON = 8
# Fit the model
model = ProphetModel()
model.fit(ts)
# Make the forecast
future_ts = ts.make_future(HORIZON)
forecast_ts = model.forecast(future_ts)
```
## Tutorials
We have also prepared a set of tutorials for an easy introduction:
| Notebook | Interactive launch |
|:----------|------:|
| [Get started](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/get_started.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/get_started.ipynb) |
| [Backtest](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/backtest.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/backtest.ipynb) |
| [EDA](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/EDA.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/EDA.ipynb) |
| [Outliers](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/outliers.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/outliers.ipynb) |
| [Clustering](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/clustering.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/clustering.ipynb) |
| [Deep learning models](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/NN_examples.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/NN_examples.ipynb) |
| [Ensembles](https://github.com/tinkoff-ai/etna-ts/tree/master/examples/ensembles.ipynb) | [](https://mybinder.org/v2/gh/tinkoff-ai/etna-ts/master?filepath=examples/ensembles.ipynb) |
## Documentation
ETNA documentation is available [here](https://etna-docs.netlify.app/).
## Acknowledgments
### ETNA.Team
[Alekseev Andrey](https://github.com/iKintosh),
[Shenshina Julia](https://github.com/julia-shenshina),
[Gabdushev Martin](https://github.com/martins0n),
[Kolesnikov Sergey](https://github.com/Scitator),
[Bunin Dmitriy](https://github.com/Mr-Geekman),
[Chikov Aleksandr](https://github.com/alex-hse-repository),
[Barinov Nikita](https://github.com/diadorer),
[Romantsov Nikolay](https://github.com/WinstonDovlatov),
[Makhin Artem](https://github.com/Ama16),
[Denisov Vladislav](https://github.com/v-v-denisov),
[Mitskovets Ivan](https://github.com/imitskovets),
[Munirova Albina](https://github.com/albinamunirova)
### ETNA.Contributors
[Levashov Artem](https://github.com/soft1q),
[Podkidyshev Aleksey](https://github.com/alekseyen)
## License
Feel free to use our library in your commercial and private applications.
ETNA is covered by [Apache 2.0](/LICENSE).
Read more about this license [here](https://choosealicense.com/licenses/apache-2.0/)
%prep
%autosetup -n etna-ts-1.3.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-etna-ts -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.1-1
- Package Spec generated
|