summaryrefslogtreecommitdiff
path: root/python-fa2.spec
blob: 7dad1f38578ccea731d08e81cf4b9298496eab31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
%global _empty_manifest_terminate_build 0
Name:		python-fa2
Version:	0.3.5
Release:	1
Summary:	The fastest ForceAtlas2 algorithm for Python (and NetworkX)
License:	GNU General Public License v3 (GPLv3)
URL:		https://github.com/bhargavchippada/forceatlas2
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/48/d1/aa67d917628d29b83f3413790155da575865f3eab8b6e577c5871ef987d8/fa2-0.3.5.tar.gz

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-tqdm
Requires:	python3-igraph
Requires:	python3-networkx

%description
## ForceAtlas2 for Python

A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the fastest python implementation available with most of the features complete. It also supports Barnes Hut approximation for maximum speedup.

ForceAtlas2 is a very fast layout algorithm for force-directed graphs. It's used to spatialize a **weighted undirected** graph in 2D (Edge weight defines the strength of the connection). The implementation is based on this [paper](http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098679) and the corresponding [gephi-java-code](https://github.com/gephi/gephi/blob/master/modules/LayoutPlugin/src/main/java/org/gephi/layout/plugin/forceAtlas2/ForceAtlas2.java). Its really quick compared to the fruchterman reingold algorithm (spring layout) of networkx and scales well to high number of nodes (>10000).

<p align="center" text-align="center">
    <b>Spatialize a random Geometric Graph</b>
</p>
<p align="center">
  <img width="460" height="300" src="https://raw.githubusercontent.com/bhargavchippada/forceatlas2/master/examples/geometric_graph.png" alt="Geometric Graph">
</p>

## Installation

Install from pip:

    pip install fa2

To build and install run from source:

    python setup.py install

**Cython is highly recommended if you are buidling from source as it will speed up by a factor of 10-100x depending on the graph**

### Dependencies

-   numpy (adjacency matrix as complete matrix)
-   scipy (adjacency matrix as sparse matrix)
-   tqdm (progressbar)
-   Cython (10-100x speedup)
-   networkx (To use the NetworkX wrapper function, you obviously need NetworkX)
-   python-igraph (To use the igraph wrapper)

<p align="center" text-align="center">
    <b>Spatialize a 2D Grid</b>
</p>
<p align="center">
  <img width="460" height="300" src="https://raw.githubusercontent.com/bhargavchippada/forceatlas2/master/examples/grid_graph.png" alt="Grid Graph">
</p>

## Usage

from fa2 import ForceAtlas2

Create a ForceAtlas2 object with the appropriate settings. ForceAtlas2 class contains three important methods:
```python
forceatlas2 (G, pos, iterations)
# G is a graph in 2D numpy ndarray format (or) scipy sparse matrix format. You can set the edge weights (> 0) in the matrix
# pos is a numpy array (Nx2) of initial positions of nodes
# iterations is num of iterations to run the algorithm
# returns a list of (x,y) pairs for each node's final position
```
```python
forceatlas2_networkx_layout(G, pos, iterations)
# G is a networkx graph. Edge weights can be set (if required) in the Networkx graph
# pos is a dictionary, as in networkx
# iterations is num of iterations to run the algorithm
# returns a dictionary of node positions (2D X-Y tuples) indexed by the node name
```
```python
forceatlas2_igraph_layout(G, pos, iterations, weight_attr)
# G is an igraph graph
# pos is a numpy array (Nx2) or list of initial positions of nodes (see that the indexing matches igraph node index)
# iterations is num of iterations to run the algorithm
# weight_attr denotes the weight attribute's name in G.es, None by default
# returns an igraph layout
```
Below is an example usage. You can also see the feature settings of ForceAtlas2 class.

```python
import networkx as nx
from fa2 import ForceAtlas2
import matplotlib.pyplot as plt

G = nx.random_geometric_graph(400, 0.2)

forceatlas2 = ForceAtlas2(
                        # Behavior alternatives
                        outboundAttractionDistribution=True,  # Dissuade hubs
                        linLogMode=False,  # NOT IMPLEMENTED
                        adjustSizes=False,  # Prevent overlap (NOT IMPLEMENTED)
                        edgeWeightInfluence=1.0,

                        # Performance
                        jitterTolerance=1.0,  # Tolerance
                        barnesHutOptimize=True,
                        barnesHutTheta=1.2,
                        multiThreaded=False,  # NOT IMPLEMENTED

                        # Tuning
                        scalingRatio=2.0,
                        strongGravityMode=False,
                        gravity=1.0,

                        # Log
                        verbose=True)

positions = forceatlas2.forceatlas2_networkx_layout(G, pos=None, iterations=2000)
nx.draw_networkx_nodes(G, positions, node_size=20, with_labels=False, node_color="blue", alpha=0.4)
nx.draw_networkx_edges(G, positions, edge_color="green", alpha=0.05)
plt.axis('off')
plt.show()

# equivalently
import igraph
G = igraph.Graph.TupleList(G.edges(), directed=False)
layout = forceatlas2.forceatlas2_igraph_layout(G, pos=None, iterations=2000)
igraph.plot(G, layout).show()
```
You can also take a look at forceatlas2.py file for understanding the ForceAtlas2 class and its functions better.

## Features Completed

-   **barnesHutOptimize**: Barnes Hut optimization, n<sup>2</sup> complexity to n.ln(n)
-   **gravity**: Attracts nodes to the center. Prevents islands from drifting away
-   **Dissuade Hubs**: Distributes attraction along outbound edges. Hubs attract less and thus are pushed to the borders
-   **scalingRatio**: How much repulsion you want. More makes a more sparse graph
-   **strongGravityMode**: A stronger gravity view
-   **jitterTolerance**: How much swinging you allow. Above 1 discouraged. Lower gives less speed and more precision
-   **verbose**: Shows a progressbar of iterations completed. Also, shows time taken for different force computations
-   **edgeWeightInfluence**: How much influence you give to the edges weight. 0 is "no influence" and 1 is "normal"

## Documentation

You will find all the documentation in the source code

## Contributors

Contributions are highly welcome. Please submit your pull requests and become a collaborator.

## Copyright

    Copyright (C) 2017 Bhargav Chippada bhargavchippada19@gmail.com.
    Licensed under the GNU GPLv3.

The files are heavily based on the java files included in Gephi, git revision 2b9a7c8 and Max Shinn's port to python of the algorithm. Here I include the copyright information from those files:

    Copyright 2008-2011 Gephi
    Authors : Mathieu Jacomy <mathieu.jacomy@gmail.com>
    Website : http://www.gephi.org
    Copyright 2011 Gephi Consortium. All rights reserved.
    Portions Copyrighted 2011 Gephi Consortium.
    The contents of this file are subject to the terms of either the
    GNU General Public License Version 3 only ("GPL") or the Common
    Development and Distribution License("CDDL") (collectively, the
    "License"). You may not use this file except in compliance with
    the License.

    <https://github.com/mwshinn/forceatlas2-python>
    Copyright 2016 Max Shinn <mws41@cam.ac.uk>
    Available under the GPLv3

    Also, thanks to Eugene Bosiakov <https://github.com/bosiakov/fa2l>




%package -n python3-fa2
Summary:	The fastest ForceAtlas2 algorithm for Python (and NetworkX)
Provides:	python-fa2
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-fa2
## ForceAtlas2 for Python

A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the fastest python implementation available with most of the features complete. It also supports Barnes Hut approximation for maximum speedup.

ForceAtlas2 is a very fast layout algorithm for force-directed graphs. It's used to spatialize a **weighted undirected** graph in 2D (Edge weight defines the strength of the connection). The implementation is based on this [paper](http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098679) and the corresponding [gephi-java-code](https://github.com/gephi/gephi/blob/master/modules/LayoutPlugin/src/main/java/org/gephi/layout/plugin/forceAtlas2/ForceAtlas2.java). Its really quick compared to the fruchterman reingold algorithm (spring layout) of networkx and scales well to high number of nodes (>10000).

<p align="center" text-align="center">
    <b>Spatialize a random Geometric Graph</b>
</p>
<p align="center">
  <img width="460" height="300" src="https://raw.githubusercontent.com/bhargavchippada/forceatlas2/master/examples/geometric_graph.png" alt="Geometric Graph">
</p>

## Installation

Install from pip:

    pip install fa2

To build and install run from source:

    python setup.py install

**Cython is highly recommended if you are buidling from source as it will speed up by a factor of 10-100x depending on the graph**

### Dependencies

-   numpy (adjacency matrix as complete matrix)
-   scipy (adjacency matrix as sparse matrix)
-   tqdm (progressbar)
-   Cython (10-100x speedup)
-   networkx (To use the NetworkX wrapper function, you obviously need NetworkX)
-   python-igraph (To use the igraph wrapper)

<p align="center" text-align="center">
    <b>Spatialize a 2D Grid</b>
</p>
<p align="center">
  <img width="460" height="300" src="https://raw.githubusercontent.com/bhargavchippada/forceatlas2/master/examples/grid_graph.png" alt="Grid Graph">
</p>

## Usage

from fa2 import ForceAtlas2

Create a ForceAtlas2 object with the appropriate settings. ForceAtlas2 class contains three important methods:
```python
forceatlas2 (G, pos, iterations)
# G is a graph in 2D numpy ndarray format (or) scipy sparse matrix format. You can set the edge weights (> 0) in the matrix
# pos is a numpy array (Nx2) of initial positions of nodes
# iterations is num of iterations to run the algorithm
# returns a list of (x,y) pairs for each node's final position
```
```python
forceatlas2_networkx_layout(G, pos, iterations)
# G is a networkx graph. Edge weights can be set (if required) in the Networkx graph
# pos is a dictionary, as in networkx
# iterations is num of iterations to run the algorithm
# returns a dictionary of node positions (2D X-Y tuples) indexed by the node name
```
```python
forceatlas2_igraph_layout(G, pos, iterations, weight_attr)
# G is an igraph graph
# pos is a numpy array (Nx2) or list of initial positions of nodes (see that the indexing matches igraph node index)
# iterations is num of iterations to run the algorithm
# weight_attr denotes the weight attribute's name in G.es, None by default
# returns an igraph layout
```
Below is an example usage. You can also see the feature settings of ForceAtlas2 class.

```python
import networkx as nx
from fa2 import ForceAtlas2
import matplotlib.pyplot as plt

G = nx.random_geometric_graph(400, 0.2)

forceatlas2 = ForceAtlas2(
                        # Behavior alternatives
                        outboundAttractionDistribution=True,  # Dissuade hubs
                        linLogMode=False,  # NOT IMPLEMENTED
                        adjustSizes=False,  # Prevent overlap (NOT IMPLEMENTED)
                        edgeWeightInfluence=1.0,

                        # Performance
                        jitterTolerance=1.0,  # Tolerance
                        barnesHutOptimize=True,
                        barnesHutTheta=1.2,
                        multiThreaded=False,  # NOT IMPLEMENTED

                        # Tuning
                        scalingRatio=2.0,
                        strongGravityMode=False,
                        gravity=1.0,

                        # Log
                        verbose=True)

positions = forceatlas2.forceatlas2_networkx_layout(G, pos=None, iterations=2000)
nx.draw_networkx_nodes(G, positions, node_size=20, with_labels=False, node_color="blue", alpha=0.4)
nx.draw_networkx_edges(G, positions, edge_color="green", alpha=0.05)
plt.axis('off')
plt.show()

# equivalently
import igraph
G = igraph.Graph.TupleList(G.edges(), directed=False)
layout = forceatlas2.forceatlas2_igraph_layout(G, pos=None, iterations=2000)
igraph.plot(G, layout).show()
```
You can also take a look at forceatlas2.py file for understanding the ForceAtlas2 class and its functions better.

## Features Completed

-   **barnesHutOptimize**: Barnes Hut optimization, n<sup>2</sup> complexity to n.ln(n)
-   **gravity**: Attracts nodes to the center. Prevents islands from drifting away
-   **Dissuade Hubs**: Distributes attraction along outbound edges. Hubs attract less and thus are pushed to the borders
-   **scalingRatio**: How much repulsion you want. More makes a more sparse graph
-   **strongGravityMode**: A stronger gravity view
-   **jitterTolerance**: How much swinging you allow. Above 1 discouraged. Lower gives less speed and more precision
-   **verbose**: Shows a progressbar of iterations completed. Also, shows time taken for different force computations
-   **edgeWeightInfluence**: How much influence you give to the edges weight. 0 is "no influence" and 1 is "normal"

## Documentation

You will find all the documentation in the source code

## Contributors

Contributions are highly welcome. Please submit your pull requests and become a collaborator.

## Copyright

    Copyright (C) 2017 Bhargav Chippada bhargavchippada19@gmail.com.
    Licensed under the GNU GPLv3.

The files are heavily based on the java files included in Gephi, git revision 2b9a7c8 and Max Shinn's port to python of the algorithm. Here I include the copyright information from those files:

    Copyright 2008-2011 Gephi
    Authors : Mathieu Jacomy <mathieu.jacomy@gmail.com>
    Website : http://www.gephi.org
    Copyright 2011 Gephi Consortium. All rights reserved.
    Portions Copyrighted 2011 Gephi Consortium.
    The contents of this file are subject to the terms of either the
    GNU General Public License Version 3 only ("GPL") or the Common
    Development and Distribution License("CDDL") (collectively, the
    "License"). You may not use this file except in compliance with
    the License.

    <https://github.com/mwshinn/forceatlas2-python>
    Copyright 2016 Max Shinn <mws41@cam.ac.uk>
    Available under the GPLv3

    Also, thanks to Eugene Bosiakov <https://github.com/bosiakov/fa2l>




%package help
Summary:	Development documents and examples for fa2
Provides:	python3-fa2-doc
%description help
## ForceAtlas2 for Python

A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the fastest python implementation available with most of the features complete. It also supports Barnes Hut approximation for maximum speedup.

ForceAtlas2 is a very fast layout algorithm for force-directed graphs. It's used to spatialize a **weighted undirected** graph in 2D (Edge weight defines the strength of the connection). The implementation is based on this [paper](http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098679) and the corresponding [gephi-java-code](https://github.com/gephi/gephi/blob/master/modules/LayoutPlugin/src/main/java/org/gephi/layout/plugin/forceAtlas2/ForceAtlas2.java). Its really quick compared to the fruchterman reingold algorithm (spring layout) of networkx and scales well to high number of nodes (>10000).

<p align="center" text-align="center">
    <b>Spatialize a random Geometric Graph</b>
</p>
<p align="center">
  <img width="460" height="300" src="https://raw.githubusercontent.com/bhargavchippada/forceatlas2/master/examples/geometric_graph.png" alt="Geometric Graph">
</p>

## Installation

Install from pip:

    pip install fa2

To build and install run from source:

    python setup.py install

**Cython is highly recommended if you are buidling from source as it will speed up by a factor of 10-100x depending on the graph**

### Dependencies

-   numpy (adjacency matrix as complete matrix)
-   scipy (adjacency matrix as sparse matrix)
-   tqdm (progressbar)
-   Cython (10-100x speedup)
-   networkx (To use the NetworkX wrapper function, you obviously need NetworkX)
-   python-igraph (To use the igraph wrapper)

<p align="center" text-align="center">
    <b>Spatialize a 2D Grid</b>
</p>
<p align="center">
  <img width="460" height="300" src="https://raw.githubusercontent.com/bhargavchippada/forceatlas2/master/examples/grid_graph.png" alt="Grid Graph">
</p>

## Usage

from fa2 import ForceAtlas2

Create a ForceAtlas2 object with the appropriate settings. ForceAtlas2 class contains three important methods:
```python
forceatlas2 (G, pos, iterations)
# G is a graph in 2D numpy ndarray format (or) scipy sparse matrix format. You can set the edge weights (> 0) in the matrix
# pos is a numpy array (Nx2) of initial positions of nodes
# iterations is num of iterations to run the algorithm
# returns a list of (x,y) pairs for each node's final position
```
```python
forceatlas2_networkx_layout(G, pos, iterations)
# G is a networkx graph. Edge weights can be set (if required) in the Networkx graph
# pos is a dictionary, as in networkx
# iterations is num of iterations to run the algorithm
# returns a dictionary of node positions (2D X-Y tuples) indexed by the node name
```
```python
forceatlas2_igraph_layout(G, pos, iterations, weight_attr)
# G is an igraph graph
# pos is a numpy array (Nx2) or list of initial positions of nodes (see that the indexing matches igraph node index)
# iterations is num of iterations to run the algorithm
# weight_attr denotes the weight attribute's name in G.es, None by default
# returns an igraph layout
```
Below is an example usage. You can also see the feature settings of ForceAtlas2 class.

```python
import networkx as nx
from fa2 import ForceAtlas2
import matplotlib.pyplot as plt

G = nx.random_geometric_graph(400, 0.2)

forceatlas2 = ForceAtlas2(
                        # Behavior alternatives
                        outboundAttractionDistribution=True,  # Dissuade hubs
                        linLogMode=False,  # NOT IMPLEMENTED
                        adjustSizes=False,  # Prevent overlap (NOT IMPLEMENTED)
                        edgeWeightInfluence=1.0,

                        # Performance
                        jitterTolerance=1.0,  # Tolerance
                        barnesHutOptimize=True,
                        barnesHutTheta=1.2,
                        multiThreaded=False,  # NOT IMPLEMENTED

                        # Tuning
                        scalingRatio=2.0,
                        strongGravityMode=False,
                        gravity=1.0,

                        # Log
                        verbose=True)

positions = forceatlas2.forceatlas2_networkx_layout(G, pos=None, iterations=2000)
nx.draw_networkx_nodes(G, positions, node_size=20, with_labels=False, node_color="blue", alpha=0.4)
nx.draw_networkx_edges(G, positions, edge_color="green", alpha=0.05)
plt.axis('off')
plt.show()

# equivalently
import igraph
G = igraph.Graph.TupleList(G.edges(), directed=False)
layout = forceatlas2.forceatlas2_igraph_layout(G, pos=None, iterations=2000)
igraph.plot(G, layout).show()
```
You can also take a look at forceatlas2.py file for understanding the ForceAtlas2 class and its functions better.

## Features Completed

-   **barnesHutOptimize**: Barnes Hut optimization, n<sup>2</sup> complexity to n.ln(n)
-   **gravity**: Attracts nodes to the center. Prevents islands from drifting away
-   **Dissuade Hubs**: Distributes attraction along outbound edges. Hubs attract less and thus are pushed to the borders
-   **scalingRatio**: How much repulsion you want. More makes a more sparse graph
-   **strongGravityMode**: A stronger gravity view
-   **jitterTolerance**: How much swinging you allow. Above 1 discouraged. Lower gives less speed and more precision
-   **verbose**: Shows a progressbar of iterations completed. Also, shows time taken for different force computations
-   **edgeWeightInfluence**: How much influence you give to the edges weight. 0 is "no influence" and 1 is "normal"

## Documentation

You will find all the documentation in the source code

## Contributors

Contributions are highly welcome. Please submit your pull requests and become a collaborator.

## Copyright

    Copyright (C) 2017 Bhargav Chippada bhargavchippada19@gmail.com.
    Licensed under the GNU GPLv3.

The files are heavily based on the java files included in Gephi, git revision 2b9a7c8 and Max Shinn's port to python of the algorithm. Here I include the copyright information from those files:

    Copyright 2008-2011 Gephi
    Authors : Mathieu Jacomy <mathieu.jacomy@gmail.com>
    Website : http://www.gephi.org
    Copyright 2011 Gephi Consortium. All rights reserved.
    Portions Copyrighted 2011 Gephi Consortium.
    The contents of this file are subject to the terms of either the
    GNU General Public License Version 3 only ("GPL") or the Common
    Development and Distribution License("CDDL") (collectively, the
    "License"). You may not use this file except in compliance with
    the License.

    <https://github.com/mwshinn/forceatlas2-python>
    Copyright 2016 Max Shinn <mws41@cam.ac.uk>
    Available under the GPLv3

    Also, thanks to Eugene Bosiakov <https://github.com/bosiakov/fa2l>




%prep
%autosetup -n fa2-0.3.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-fa2 -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.5-1
- Package Spec generated