1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
%global _empty_manifest_terminate_build 0
Name: python-farasapy
Version: 0.0.14
Release: 1
Summary: A Python Wrapper for the well Farasa toolkit
License: MIT License
URL: https://github.com/MagedSaeed/farasapy
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/3d/77/4c614e814aa71c1c72a0a150a571d01080fb27abdeb581349aecf02a976d/farasapy-0.0.14.tar.gz
BuildArch: noarch
Requires: python3-requests
Requires: python3-tqdm
%description
# Table of Content
- [Table of Content](#table-of-content)
- [Disclaimer](#disclaimer)
- [Introduction](#introduction)
- [Installation](#installation)
- [How to use](#how-to-use)
- [AN IMPORTANT REMARK](#an-important-remark)
- [An Overview](#an-overview)
- [Standalone Mode](#standalone-mode)
- [Interactive Mode](#interactive-mode)
- [Contribution](#contribution)
- [Want to cite?](#want-to-cite)
- [Useful URLs](#useful-urls)
<p align="center">
<a href="https://colab.research.google.com/drive/1xjzYwmfAszNzfR6Z2lSQi3nKYcjarXAW" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
</p>




# Disclaimer
>This is a Python API wrapper for [farasa](http://qatsdemo.cloudapp.net/farasa/) [[http://qatsdemo.cloudapp.net/farasa/](http://qatsdemo.cloudapp.net/farasa/)] toolkit. Although this work is licsenced under MIT, the original work(the toolkit) is __strictly premitted for research purposes only__. For any commercial uses, please contact the toolkit creators[http://qatsdemo.cloudapp.net/farasa/].
# Introduction
Farasa is an Arabic NLP toolkit serving the following tasks:
1. Segmentation.
2. Stemming.
3. Named Entity Recognition (NER).
4. Part Of Speech tagging (POS tagging).
5. Diacritization.
The toolkit is built and compiled in Java. Developers who want to use it without using this library may call the binaries directly from their code.
As Python is a general purpose language and so popular for many NLP tasks, an automation to these calls to the toolkit from the code would be convenient. This is where this wrapper fits.
# Installation
```
pip install farasapy
```
# How to use
> An interactive Google colab code of the library can be reached from here [https://colab.research.google.com/drive/1xjzYwmfAszNzfR6Z2lSQi3nKYcjarXAW?usp=sharing].
## AN IMPORTANT REMARK
- The library, as it is a wrapper for Java jars, requires that **Java is installed in your system** and is **in your PATH**. It is, also, not recommended to have a version below Java 1.7.
- Some binaries are computationally HEAVY!
## An Overview
Farasapy wraps and maintains all the toolkit's APIs in different classes where each class is in separate file. You need to import your class of interest from its file as follows:
```
from farasa.pos import FarasaPOSTagger
from farasa.ner import FarasaNamedEntityRecognizer
from farasa.diacratizer import FarasaDiacritizer
from farasa.segmenter import FarasaSegmenter
from farasa.stemmer import FarasaStemmer
```
Now, If you are using the library for the first time, the library needs to download farasa toolkit binaries first. You do not need to worry about anything. The library, whenever you instantiate an object of any of its classes, will first check for the binaries, download them if they are not existed. This is an example of instantiating an object from `FarasaStemmer` for the first use of the library.
```
stemmer = FarasaStemmer()
perform system check...
check java version...
Your java version is 1.8 which is compatiple with Farasa
check toolkit binaries...
some binaries are not existed..
downloading zipped binaries...
100%|███████████████████████████████████████| 200M/200M [02:39<00:00, 1.26MiB/s]
extracting...
toolkit binaries are downloaded and extracted.
Dependencies seem to be satisfied..
task [STEM] is initialized in STANDALONE mode...
```
let us *stem* the following example:
```
sample =\
'''
يُشار إلى أن اللغة العربية يتحدثها أكثر من 422 مليون نسمة ويتوزع متحدثوها
في المنطقة المعروفة باسم الوطن العربي بالإضافة إلى العديد من المناطق ال
أخرى المجاورة مثل الأهواز وتركيا وتشاد والسنغال وإريتريا وغيرها.وهي اللغ
ة الرابعة من لغات منظمة الأمم المتحدة الرسمية الست.
'''
stemmed_text = stemmer.stem(sample)
print(stemmed_text)
'أشار إلى أن لغة عربي تحدث أكثر من 422 مليون نسمة توزع متحدثوها في منطقة معروف اسم وطن عربي إضافة إلى عديد من منطقة آخر مجاور مثل أهواز تركيا تشاد سنغال أريتريا غير . هي لغة رابع من لغة منظمة أمة متحد رسمي ست .'
```
You may notice that the last line of object instantiation states that the object is instantiated in **STANDALONE** mode. Farasapy, like the toolkit binaries themselves, can run in two different modes: **Interactive** and **Standalone**.
### Standalone Mode
In standalone mode, the instantiated object will call the binary each time it performs its task. It will put the input text in a temporary file, execute the binary with this temporary file, and finally extract the output from another temporary file. These temporary files are garbage collected once the task ends. Be careful that some binaries, *like the diacritizer*, might take very long time to start. Hence, this option is preferred when you have long text and you want to do it only once.
### Interactive Mode
In interactive mode, the object will run the binary once instantiated. It, then, will feed the text to the binary interactively and capture the output on each input. However, the user should be careful not to put large lines as the output, just like in shells, might not be as expected. It is a good practice to *terminate* by `my_obj.terminate()` these kinds of objects once they are not needed to avoid any unexpected behaviour in your code.
For best practices, use the **INTERACTIVE** mode where the input text is small and you need to do the task multiple times. However, The **STANDALONE** mode is the best for large input texts where the task is expected to be done only once.
To work on **interactive mode**, you just need to pass `interactive=True` option to your object constructor.
The following is an example on the segmentation API that is running *interactively*.
```
segmenter = FarasaSegmenter(interactive=True)
perform system check...
check java version...
Your java version is 1.8 which is compatiple with Farasa
check toolkit binaries...
Dependencies seem to be satisfied..
/path/to/the/library/farasa/__base.py:40: UserWarning: Be careful with large lines as they may break on interactive mode. You may switch to Standalone mode for such cases.
warnings.warn("Be careful with large lines as they may break on interactive mode. You may switch to Standalone mode for such cases.")
initializing [SEGMENT] task in INTERACTIVE mode...
task [SEGMENT] is initialized interactively.
segmented = segmenter.segment(sample)
print(segmented)
'يشار إلى أن ال+لغ+ة ال+عربي+ة يتحدث+ها أكثر من 422 مليون نسم+ة و+يتوزع متحدثوها في ال+منطق+ة ال+معروف+ة باسم ال+وطن ال+عربي ب+ال+إضاف+ة إلى ال+عديد من ال+مناطق ال+أخرى ال+مجاور+ة مثل ال+أهواز و+تركيا و+تشاد و+ال+سنغال و+إريتريا و+غير+ها . و+هي ال+لغ+ة ال+رابع+ة من لغ+ات منظم+ة ال+أمم ال+متحد+ة ال+رسمي+ة ال+ست .'
```
# Contribution
- The credit of desegmentation code goes for @Wissam Antoun [https://github.com/WissamAntoun/Farasa_Desegmenter] in his repository [https://github.com/WissamAntoun/Farasa_Desegmenter].
# Want to cite?
You can find the list of publications to site from here: http://qatsdemo.cloudapp.net/farasa/.
# Useful URLs
- The official site: http://alt.qcri.org/farasa/
- farasa from GitHub topics: https://github.com/topics/farasa
- A repository by one of the toolkit authors containing WikiNews corpus: https://github.com/kdarwish/Farasa
%package -n python3-farasapy
Summary: A Python Wrapper for the well Farasa toolkit
Provides: python-farasapy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-farasapy
# Table of Content
- [Table of Content](#table-of-content)
- [Disclaimer](#disclaimer)
- [Introduction](#introduction)
- [Installation](#installation)
- [How to use](#how-to-use)
- [AN IMPORTANT REMARK](#an-important-remark)
- [An Overview](#an-overview)
- [Standalone Mode](#standalone-mode)
- [Interactive Mode](#interactive-mode)
- [Contribution](#contribution)
- [Want to cite?](#want-to-cite)
- [Useful URLs](#useful-urls)
<p align="center">
<a href="https://colab.research.google.com/drive/1xjzYwmfAszNzfR6Z2lSQi3nKYcjarXAW" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
</p>




# Disclaimer
>This is a Python API wrapper for [farasa](http://qatsdemo.cloudapp.net/farasa/) [[http://qatsdemo.cloudapp.net/farasa/](http://qatsdemo.cloudapp.net/farasa/)] toolkit. Although this work is licsenced under MIT, the original work(the toolkit) is __strictly premitted for research purposes only__. For any commercial uses, please contact the toolkit creators[http://qatsdemo.cloudapp.net/farasa/].
# Introduction
Farasa is an Arabic NLP toolkit serving the following tasks:
1. Segmentation.
2. Stemming.
3. Named Entity Recognition (NER).
4. Part Of Speech tagging (POS tagging).
5. Diacritization.
The toolkit is built and compiled in Java. Developers who want to use it without using this library may call the binaries directly from their code.
As Python is a general purpose language and so popular for many NLP tasks, an automation to these calls to the toolkit from the code would be convenient. This is where this wrapper fits.
# Installation
```
pip install farasapy
```
# How to use
> An interactive Google colab code of the library can be reached from here [https://colab.research.google.com/drive/1xjzYwmfAszNzfR6Z2lSQi3nKYcjarXAW?usp=sharing].
## AN IMPORTANT REMARK
- The library, as it is a wrapper for Java jars, requires that **Java is installed in your system** and is **in your PATH**. It is, also, not recommended to have a version below Java 1.7.
- Some binaries are computationally HEAVY!
## An Overview
Farasapy wraps and maintains all the toolkit's APIs in different classes where each class is in separate file. You need to import your class of interest from its file as follows:
```
from farasa.pos import FarasaPOSTagger
from farasa.ner import FarasaNamedEntityRecognizer
from farasa.diacratizer import FarasaDiacritizer
from farasa.segmenter import FarasaSegmenter
from farasa.stemmer import FarasaStemmer
```
Now, If you are using the library for the first time, the library needs to download farasa toolkit binaries first. You do not need to worry about anything. The library, whenever you instantiate an object of any of its classes, will first check for the binaries, download them if they are not existed. This is an example of instantiating an object from `FarasaStemmer` for the first use of the library.
```
stemmer = FarasaStemmer()
perform system check...
check java version...
Your java version is 1.8 which is compatiple with Farasa
check toolkit binaries...
some binaries are not existed..
downloading zipped binaries...
100%|███████████████████████████████████████| 200M/200M [02:39<00:00, 1.26MiB/s]
extracting...
toolkit binaries are downloaded and extracted.
Dependencies seem to be satisfied..
task [STEM] is initialized in STANDALONE mode...
```
let us *stem* the following example:
```
sample =\
'''
يُشار إلى أن اللغة العربية يتحدثها أكثر من 422 مليون نسمة ويتوزع متحدثوها
في المنطقة المعروفة باسم الوطن العربي بالإضافة إلى العديد من المناطق ال
أخرى المجاورة مثل الأهواز وتركيا وتشاد والسنغال وإريتريا وغيرها.وهي اللغ
ة الرابعة من لغات منظمة الأمم المتحدة الرسمية الست.
'''
stemmed_text = stemmer.stem(sample)
print(stemmed_text)
'أشار إلى أن لغة عربي تحدث أكثر من 422 مليون نسمة توزع متحدثوها في منطقة معروف اسم وطن عربي إضافة إلى عديد من منطقة آخر مجاور مثل أهواز تركيا تشاد سنغال أريتريا غير . هي لغة رابع من لغة منظمة أمة متحد رسمي ست .'
```
You may notice that the last line of object instantiation states that the object is instantiated in **STANDALONE** mode. Farasapy, like the toolkit binaries themselves, can run in two different modes: **Interactive** and **Standalone**.
### Standalone Mode
In standalone mode, the instantiated object will call the binary each time it performs its task. It will put the input text in a temporary file, execute the binary with this temporary file, and finally extract the output from another temporary file. These temporary files are garbage collected once the task ends. Be careful that some binaries, *like the diacritizer*, might take very long time to start. Hence, this option is preferred when you have long text and you want to do it only once.
### Interactive Mode
In interactive mode, the object will run the binary once instantiated. It, then, will feed the text to the binary interactively and capture the output on each input. However, the user should be careful not to put large lines as the output, just like in shells, might not be as expected. It is a good practice to *terminate* by `my_obj.terminate()` these kinds of objects once they are not needed to avoid any unexpected behaviour in your code.
For best practices, use the **INTERACTIVE** mode where the input text is small and you need to do the task multiple times. However, The **STANDALONE** mode is the best for large input texts where the task is expected to be done only once.
To work on **interactive mode**, you just need to pass `interactive=True` option to your object constructor.
The following is an example on the segmentation API that is running *interactively*.
```
segmenter = FarasaSegmenter(interactive=True)
perform system check...
check java version...
Your java version is 1.8 which is compatiple with Farasa
check toolkit binaries...
Dependencies seem to be satisfied..
/path/to/the/library/farasa/__base.py:40: UserWarning: Be careful with large lines as they may break on interactive mode. You may switch to Standalone mode for such cases.
warnings.warn("Be careful with large lines as they may break on interactive mode. You may switch to Standalone mode for such cases.")
initializing [SEGMENT] task in INTERACTIVE mode...
task [SEGMENT] is initialized interactively.
segmented = segmenter.segment(sample)
print(segmented)
'يشار إلى أن ال+لغ+ة ال+عربي+ة يتحدث+ها أكثر من 422 مليون نسم+ة و+يتوزع متحدثوها في ال+منطق+ة ال+معروف+ة باسم ال+وطن ال+عربي ب+ال+إضاف+ة إلى ال+عديد من ال+مناطق ال+أخرى ال+مجاور+ة مثل ال+أهواز و+تركيا و+تشاد و+ال+سنغال و+إريتريا و+غير+ها . و+هي ال+لغ+ة ال+رابع+ة من لغ+ات منظم+ة ال+أمم ال+متحد+ة ال+رسمي+ة ال+ست .'
```
# Contribution
- The credit of desegmentation code goes for @Wissam Antoun [https://github.com/WissamAntoun/Farasa_Desegmenter] in his repository [https://github.com/WissamAntoun/Farasa_Desegmenter].
# Want to cite?
You can find the list of publications to site from here: http://qatsdemo.cloudapp.net/farasa/.
# Useful URLs
- The official site: http://alt.qcri.org/farasa/
- farasa from GitHub topics: https://github.com/topics/farasa
- A repository by one of the toolkit authors containing WikiNews corpus: https://github.com/kdarwish/Farasa
%package help
Summary: Development documents and examples for farasapy
Provides: python3-farasapy-doc
%description help
# Table of Content
- [Table of Content](#table-of-content)
- [Disclaimer](#disclaimer)
- [Introduction](#introduction)
- [Installation](#installation)
- [How to use](#how-to-use)
- [AN IMPORTANT REMARK](#an-important-remark)
- [An Overview](#an-overview)
- [Standalone Mode](#standalone-mode)
- [Interactive Mode](#interactive-mode)
- [Contribution](#contribution)
- [Want to cite?](#want-to-cite)
- [Useful URLs](#useful-urls)
<p align="center">
<a href="https://colab.research.google.com/drive/1xjzYwmfAszNzfR6Z2lSQi3nKYcjarXAW" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
</p>




# Disclaimer
>This is a Python API wrapper for [farasa](http://qatsdemo.cloudapp.net/farasa/) [[http://qatsdemo.cloudapp.net/farasa/](http://qatsdemo.cloudapp.net/farasa/)] toolkit. Although this work is licsenced under MIT, the original work(the toolkit) is __strictly premitted for research purposes only__. For any commercial uses, please contact the toolkit creators[http://qatsdemo.cloudapp.net/farasa/].
# Introduction
Farasa is an Arabic NLP toolkit serving the following tasks:
1. Segmentation.
2. Stemming.
3. Named Entity Recognition (NER).
4. Part Of Speech tagging (POS tagging).
5. Diacritization.
The toolkit is built and compiled in Java. Developers who want to use it without using this library may call the binaries directly from their code.
As Python is a general purpose language and so popular for many NLP tasks, an automation to these calls to the toolkit from the code would be convenient. This is where this wrapper fits.
# Installation
```
pip install farasapy
```
# How to use
> An interactive Google colab code of the library can be reached from here [https://colab.research.google.com/drive/1xjzYwmfAszNzfR6Z2lSQi3nKYcjarXAW?usp=sharing].
## AN IMPORTANT REMARK
- The library, as it is a wrapper for Java jars, requires that **Java is installed in your system** and is **in your PATH**. It is, also, not recommended to have a version below Java 1.7.
- Some binaries are computationally HEAVY!
## An Overview
Farasapy wraps and maintains all the toolkit's APIs in different classes where each class is in separate file. You need to import your class of interest from its file as follows:
```
from farasa.pos import FarasaPOSTagger
from farasa.ner import FarasaNamedEntityRecognizer
from farasa.diacratizer import FarasaDiacritizer
from farasa.segmenter import FarasaSegmenter
from farasa.stemmer import FarasaStemmer
```
Now, If you are using the library for the first time, the library needs to download farasa toolkit binaries first. You do not need to worry about anything. The library, whenever you instantiate an object of any of its classes, will first check for the binaries, download them if they are not existed. This is an example of instantiating an object from `FarasaStemmer` for the first use of the library.
```
stemmer = FarasaStemmer()
perform system check...
check java version...
Your java version is 1.8 which is compatiple with Farasa
check toolkit binaries...
some binaries are not existed..
downloading zipped binaries...
100%|███████████████████████████████████████| 200M/200M [02:39<00:00, 1.26MiB/s]
extracting...
toolkit binaries are downloaded and extracted.
Dependencies seem to be satisfied..
task [STEM] is initialized in STANDALONE mode...
```
let us *stem* the following example:
```
sample =\
'''
يُشار إلى أن اللغة العربية يتحدثها أكثر من 422 مليون نسمة ويتوزع متحدثوها
في المنطقة المعروفة باسم الوطن العربي بالإضافة إلى العديد من المناطق ال
أخرى المجاورة مثل الأهواز وتركيا وتشاد والسنغال وإريتريا وغيرها.وهي اللغ
ة الرابعة من لغات منظمة الأمم المتحدة الرسمية الست.
'''
stemmed_text = stemmer.stem(sample)
print(stemmed_text)
'أشار إلى أن لغة عربي تحدث أكثر من 422 مليون نسمة توزع متحدثوها في منطقة معروف اسم وطن عربي إضافة إلى عديد من منطقة آخر مجاور مثل أهواز تركيا تشاد سنغال أريتريا غير . هي لغة رابع من لغة منظمة أمة متحد رسمي ست .'
```
You may notice that the last line of object instantiation states that the object is instantiated in **STANDALONE** mode. Farasapy, like the toolkit binaries themselves, can run in two different modes: **Interactive** and **Standalone**.
### Standalone Mode
In standalone mode, the instantiated object will call the binary each time it performs its task. It will put the input text in a temporary file, execute the binary with this temporary file, and finally extract the output from another temporary file. These temporary files are garbage collected once the task ends. Be careful that some binaries, *like the diacritizer*, might take very long time to start. Hence, this option is preferred when you have long text and you want to do it only once.
### Interactive Mode
In interactive mode, the object will run the binary once instantiated. It, then, will feed the text to the binary interactively and capture the output on each input. However, the user should be careful not to put large lines as the output, just like in shells, might not be as expected. It is a good practice to *terminate* by `my_obj.terminate()` these kinds of objects once they are not needed to avoid any unexpected behaviour in your code.
For best practices, use the **INTERACTIVE** mode where the input text is small and you need to do the task multiple times. However, The **STANDALONE** mode is the best for large input texts where the task is expected to be done only once.
To work on **interactive mode**, you just need to pass `interactive=True` option to your object constructor.
The following is an example on the segmentation API that is running *interactively*.
```
segmenter = FarasaSegmenter(interactive=True)
perform system check...
check java version...
Your java version is 1.8 which is compatiple with Farasa
check toolkit binaries...
Dependencies seem to be satisfied..
/path/to/the/library/farasa/__base.py:40: UserWarning: Be careful with large lines as they may break on interactive mode. You may switch to Standalone mode for such cases.
warnings.warn("Be careful with large lines as they may break on interactive mode. You may switch to Standalone mode for such cases.")
initializing [SEGMENT] task in INTERACTIVE mode...
task [SEGMENT] is initialized interactively.
segmented = segmenter.segment(sample)
print(segmented)
'يشار إلى أن ال+لغ+ة ال+عربي+ة يتحدث+ها أكثر من 422 مليون نسم+ة و+يتوزع متحدثوها في ال+منطق+ة ال+معروف+ة باسم ال+وطن ال+عربي ب+ال+إضاف+ة إلى ال+عديد من ال+مناطق ال+أخرى ال+مجاور+ة مثل ال+أهواز و+تركيا و+تشاد و+ال+سنغال و+إريتريا و+غير+ها . و+هي ال+لغ+ة ال+رابع+ة من لغ+ات منظم+ة ال+أمم ال+متحد+ة ال+رسمي+ة ال+ست .'
```
# Contribution
- The credit of desegmentation code goes for @Wissam Antoun [https://github.com/WissamAntoun/Farasa_Desegmenter] in his repository [https://github.com/WissamAntoun/Farasa_Desegmenter].
# Want to cite?
You can find the list of publications to site from here: http://qatsdemo.cloudapp.net/farasa/.
# Useful URLs
- The official site: http://alt.qcri.org/farasa/
- farasa from GitHub topics: https://github.com/topics/farasa
- A repository by one of the toolkit authors containing WikiNews corpus: https://github.com/kdarwish/Farasa
%prep
%autosetup -n farasapy-0.0.14
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-farasapy -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.14-1
- Package Spec generated
|