summaryrefslogtreecommitdiff
path: root/python-fbprophet.spec
blob: 03f76f615a88739eafd71e982104c40b26102d44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
%global _empty_manifest_terminate_build 0
Name:		python-fbprophet
Version:	0.7.1
Release:	1
Summary:	Automatic Forecasting Procedure
License:	MIT
URL:		https://facebook.github.io/prophet/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/1a/b5/9c3fefa8a7b839729df57deedf0a69815841dfb88f0df911f34d998230b7/fbprophet-0.7.1.tar.gz
BuildArch:	noarch


%description
# Prophet: Automatic Forecasting Procedure

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

Prophet is [open source software](https://code.facebook.com/projects/>)  released by [Facebook's Core Data Science team ](https://research.fb.com/category/data-science/).

Full documentation and examples available at the homepage: https://facebook.github.io/prophet/

## Important links

- HTML documentation: https://facebook.github.io/prophet/docs/quick_start.html
- Issue tracker: https://github.com/facebook/prophet/issues
- Source code repository: https://github.com/facebook/prophet
- Implementation of Prophet in R: https://cran.r-project.org/package=prophet

## Other forecasting packages

- Rob Hyndman's [forecast package](http://robjhyndman.com/software/forecast/)
- [Statsmodels](http://statsmodels.sourceforge.net/)

## Installation

```shell
pip install fbprophet
```
Note:  Installation requires PyStan, which has its [own installation instructions](http://pystan.readthedocs.io/en/latest/installation_beginner.html).
On Windows, PyStan requires a compiler so you'll need to [follow the instructions](http://pystan.readthedocs.io/en/latest/windows.html).
 The key step is installing a recent [C++ compiler](https://visualstudio.microsoft.com/visual-cpp-build-tools/)

## Installation using Docker and docker-compose (via Makefile)

Simply type `make build` and if everything is fine you should be able to `make shell` or alternative jump directly to `make py-shell`. 

To run the tests, inside the container `cd python/fbprophet` and then `python -m unittest`

### Example usage

```python
  >>> from fbprophet import Prophet
  >>> m = Prophet()
  >>> m.fit(df)  # df is a pandas.DataFrame with 'y' and 'ds' columns
  >>> future = m.make_future_dataframe(periods=365)
  >>> m.predict(future)
  ```

%package -n python3-fbprophet
Summary:	Automatic Forecasting Procedure
Provides:	python-fbprophet
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-fbprophet
# Prophet: Automatic Forecasting Procedure

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

Prophet is [open source software](https://code.facebook.com/projects/>)  released by [Facebook's Core Data Science team ](https://research.fb.com/category/data-science/).

Full documentation and examples available at the homepage: https://facebook.github.io/prophet/

## Important links

- HTML documentation: https://facebook.github.io/prophet/docs/quick_start.html
- Issue tracker: https://github.com/facebook/prophet/issues
- Source code repository: https://github.com/facebook/prophet
- Implementation of Prophet in R: https://cran.r-project.org/package=prophet

## Other forecasting packages

- Rob Hyndman's [forecast package](http://robjhyndman.com/software/forecast/)
- [Statsmodels](http://statsmodels.sourceforge.net/)

## Installation

```shell
pip install fbprophet
```
Note:  Installation requires PyStan, which has its [own installation instructions](http://pystan.readthedocs.io/en/latest/installation_beginner.html).
On Windows, PyStan requires a compiler so you'll need to [follow the instructions](http://pystan.readthedocs.io/en/latest/windows.html).
 The key step is installing a recent [C++ compiler](https://visualstudio.microsoft.com/visual-cpp-build-tools/)

## Installation using Docker and docker-compose (via Makefile)

Simply type `make build` and if everything is fine you should be able to `make shell` or alternative jump directly to `make py-shell`. 

To run the tests, inside the container `cd python/fbprophet` and then `python -m unittest`

### Example usage

```python
  >>> from fbprophet import Prophet
  >>> m = Prophet()
  >>> m.fit(df)  # df is a pandas.DataFrame with 'y' and 'ds' columns
  >>> future = m.make_future_dataframe(periods=365)
  >>> m.predict(future)
  ```

%package help
Summary:	Development documents and examples for fbprophet
Provides:	python3-fbprophet-doc
%description help
# Prophet: Automatic Forecasting Procedure

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

Prophet is [open source software](https://code.facebook.com/projects/>)  released by [Facebook's Core Data Science team ](https://research.fb.com/category/data-science/).

Full documentation and examples available at the homepage: https://facebook.github.io/prophet/

## Important links

- HTML documentation: https://facebook.github.io/prophet/docs/quick_start.html
- Issue tracker: https://github.com/facebook/prophet/issues
- Source code repository: https://github.com/facebook/prophet
- Implementation of Prophet in R: https://cran.r-project.org/package=prophet

## Other forecasting packages

- Rob Hyndman's [forecast package](http://robjhyndman.com/software/forecast/)
- [Statsmodels](http://statsmodels.sourceforge.net/)

## Installation

```shell
pip install fbprophet
```
Note:  Installation requires PyStan, which has its [own installation instructions](http://pystan.readthedocs.io/en/latest/installation_beginner.html).
On Windows, PyStan requires a compiler so you'll need to [follow the instructions](http://pystan.readthedocs.io/en/latest/windows.html).
 The key step is installing a recent [C++ compiler](https://visualstudio.microsoft.com/visual-cpp-build-tools/)

## Installation using Docker and docker-compose (via Makefile)

Simply type `make build` and if everything is fine you should be able to `make shell` or alternative jump directly to `make py-shell`. 

To run the tests, inside the container `cd python/fbprophet` and then `python -m unittest`

### Example usage

```python
  >>> from fbprophet import Prophet
  >>> m = Prophet()
  >>> m.fit(df)  # df is a pandas.DataFrame with 'y' and 'ds' columns
  >>> future = m.make_future_dataframe(periods=365)
  >>> m.predict(future)
  ```

%prep
%autosetup -n fbprophet-0.7.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-fbprophet -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 0.7.1-1
- Package Spec generated