summaryrefslogtreecommitdiff
path: root/python-finetuner.spec
blob: 2e669da399f3efb0aa8e3df29575cb83959247a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
%global _empty_manifest_terminate_build 0
Name:		python-finetuner
Version:	0.7.6
Release:	1
Summary:	Task-oriented finetuning for better embeddings on neural search.
License:	Apache 2.0
URL:		https://github.com/jina-ai/finetuner/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/1e/f2/65b859918b1e5e4cbfa6e52fb711087e0f44047426e4e7a9c1eb5894eef0/finetuner-0.7.6.tar.gz
BuildArch:	noarch


%description
<br><br>

<p align="center">
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>


<p align="center">
<b>Task-oriented finetuning for better embeddings on neural search</b>
</p>

<p align=center>
<a href="https://pypi.org/project/finetuner/"><img alt="PyPI" src="https://img.shields.io/pypi/v/finetuner?label=Release&style=flat-square"></a>
<a href="https://codecov.io/gh/jina-ai/finetuner"><img alt="Codecov branch" src="https://img.shields.io/codecov/c/github/jina-ai/finetuner/main?logo=Codecov&logoColor=white&style=flat-square"></a>
<a href="https://pypistats.org/packages/finetuner"><img alt="PyPI - Downloads from official pypistats" src="https://img.shields.io/pypi/dm/finetuner?style=flat-square"></a>
<a href="https://slack.jina.ai"><img src="https://img.shields.io/badge/Slack-3.6k-blueviolet?logo=slack&amp;logoColor=white&style=flat-square"></a>
</p>

<!-- start elevator-pitch -->

Fine-tuning is an effective way to improve performance on [neural search](https://jina.ai/news/what-is-neural-search-and-learn-to-build-a-neural-search-engine/) tasks.
However, setting up and performing fine-tuning can be very time-consuming and resource-intensive.

Jina AI's Finetuner makes fine-tuning easier and faster by streamlining the workflow and handling all the complexity and infrastructure in the cloud.
With Finetuner, you can easily enhance the performance of pre-trained models,
making them production-ready [without extensive labeling](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/) or expensive hardware.

🎏 **Better embeddings**: Create high-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems,
clustering, duplication detection, anomaly detection, or other uses.

⏰ **Low budget, high expectations**: Bring considerable improvements to model performance, making the most out of as little as a few hundred training samples, and finish fine-tuning in as little as an hour.

📈 **Performance promise**: Enhance the performance of pre-trained models so that they deliver state-of-the-art performance on 
domain-specific applications.

🔱 **Simple yet powerful**: Easy access to 40+ mainstream loss functions, 10+ optimizers, layer pruning, weight
freezing, dimensionality reduction, hard-negative mining, cross-modal models, and distributed training. 

☁ **All-in-cloud**: Train using our GPU infrastructure, manage runs, experiments, and artifacts on Jina AI Cloud
without worrying about resource availability, complex integration, or infrastructure costs.

<!-- end elevator-pitch -->

## [Documentation](https://finetuner.jina.ai/)

## Benchmarks

<table>
<thead>
  <tr>
    <th>Model</th>
    <th>Task</th>
    <th>Metric</th>
    <th>Pretrained</th>
    <th>Finetuned</th>
    <th>Delta</th>
    <th>Run it!</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td rowspan="2">BERT</td>
    <td rowspan="2"><a href="https://www.kaggle.com/c/quora-question-pairs">Quora</a> Question Answering</td>
    <td>mRR</td>
    <td>0.835</td>
    <td>0.967</td>
    <td><span style="color:green">15.8%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1Ui3Gw3ZL785I7AuzlHv3I0-jTvFFxJ4_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.915</td>
    <td>0.963</td>
    <td><span style="color:green">5.3%</span></td>
  </tr>
  <tr>
    <td rowspan="2">ResNet</td>
    <td rowspan="2">Visual similarity search on <a href="https://sites.google.com/view/totally-looks-like-dataset">TLL</a></td>
    <td>mAP</td>
    <td>0.110</td>
    <td>0.196</td>
    <td><span style="color:green">78.2%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1QuUTy3iVR-kTPljkwplKYaJ-NTCgPEc_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.249</td>
    <td>0.460</td>
    <td><span style="color:green">84.7%</span></td>
  </tr>
  <tr>
    <td rowspan="2">CLIP</td>
    <td rowspan="2"><a href="https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html">Deep Fashion</a> text-to-image search</td>
    <td>mRR</td>
    <td>0.575</td>
    <td>0.676</td>
    <td><span style="color:green">17.4%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1yKnmy2Qotrh3OhgwWRsMWPFwOSAecBxg?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.473</td>
    <td>0.564</td>
    <td><span style="color:green">19.2%</span></td>
  </tr>
  <tr>
    <td rowspan="2">M-CLIP</td>
    <td rowspan="2"><a href="https://xmrec.github.io/">Cross market</a> product recommendation (German)</td>
    <td>mRR</td>
    <td>0.430</td>
    <td>0.648</td>
    <td><span style="color:green">50.7%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/10Wldbu0Zugj7NmQyZwZzuorZ6SSAhtIo"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.247</td>
    <td>0.340</td>
    <td><span style="color:green">37.7%</span></td>
  </tr>
  <tr>
    <td rowspan="2">PointNet++</td>
    <td rowspan="2"><a href="https://modelnet.cs.princeton.edu/">ModelNet40</a> 3D Mesh Search</td>
    <td>mRR</td>
    <td>0.791</td>
    <td>0.891</td>
    <td><span style="color:green">12.7%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1lIMDFkUVsWMshU-akJ_hwzBfJ37zLFzU?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.154</td>
    <td>0.242</td>
    <td><span style="color:green">57.1%</span></td>
  </tr>

</tbody>
</table>

<sub><sup>All metrics were evaluated for k@20 after training for 5 epochs using the Adam optimizer with learning rates of 1e-4 for ResNet, 1e-7 for CLIP and 1e-5 for the BERT models, 5e-4 for PointNet++</sup></sub>

<!-- start install-instruction -->

## Install

Make sure you have Python 3.8+ installed. Finetuner can be installed via `pip` by executing:

```bash
pip install -U finetuner
```

If you want to encode `docarray.DocumentArray` objects with the `finetuner.encode` function, you need to install 
`"finetuner[full]"`. This includes a number of additional dependencies, which are necessary for encoding: Torch, 
Torchvision and OpenCLIP:

```bash
pip install "finetuner[full]"
```

<!-- end install-instruction -->

> ⚠️ Starting with version 0.5.0, Finetuner computing is performed on Jina AI Cloud. The last local version is `0.4.1`. 
> This version is still available for installation via `pip`. See [Finetuner git tags and releases](https://github.com/jina-ai/finetuner/releases).

<!-- start finetuner-articles -->
## Articles about Finetuner

Check out our published blogposts and tutorials to see Finetuner in action!

- [Fine-tuning with Low Budget and High Expectations](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/)
- [Hype and Hybrids: Search is more than Keywords and Vectors](https://jina.ai/news/hype-and-hybrids-multimodal-search-means-more-than-keywords-and-vectors-2/)
- [Improving Search Quality for Non-English Queries with Fine-tuned Multilingual CLIP Models](https://jina.ai/news/improving-search-quality-non-english-queries-fine-tuned-multilingual-clip-models/)
- [How Much Do We Get by Finetuning CLIP?](https://jina.ai/news/applying-jina-ai-finetuner-to-clip-less-data-smaller-models-higher-performance/)

<!-- end finetuner-articles -->

<!-- start support-pitch -->
## Support

- Use [Discussions](https://github.com/jina-ai/finetuner/discussions) to talk about your use cases, questions, and
  support queries.
- Join our [Slack community](https://slack.jina.ai) and chat with other Jina AI community members about ideas.
- Join our [Engineering All Hands](https://youtube.com/playlist?list=PL3UBBWOUVhFYRUa_gpYYKBqEAkO4sxmne) meet-up to discuss your use case and learn Jina AI new features.
    - **When?** The second Tuesday of every month
    - **Where?**
      Zoom ([see our public events calendar](https://calendar.google.com/calendar/embed?src=c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com&ctz=Europe%2FBerlin)/[.ical](https://calendar.google.com/calendar/ical/c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com/public/basic.ics))
      and [live stream on YouTube](https://youtube.com/c/jina-ai)
- Subscribe to the latest video tutorials on our [YouTube channel](https://youtube.com/c/jina-ai)

## Join Us

Finetuner is backed by [Jina AI](https://jina.ai) and licensed under [Apache-2.0](./LICENSE). 

[We are actively hiring](https://jobs.jina.ai) AI engineers and solution engineers to build the next generation of
open-source AI ecosystems.

<!-- end support-pitch -->

%package -n python3-finetuner
Summary:	Task-oriented finetuning for better embeddings on neural search.
Provides:	python-finetuner
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-finetuner
<br><br>

<p align="center">
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>


<p align="center">
<b>Task-oriented finetuning for better embeddings on neural search</b>
</p>

<p align=center>
<a href="https://pypi.org/project/finetuner/"><img alt="PyPI" src="https://img.shields.io/pypi/v/finetuner?label=Release&style=flat-square"></a>
<a href="https://codecov.io/gh/jina-ai/finetuner"><img alt="Codecov branch" src="https://img.shields.io/codecov/c/github/jina-ai/finetuner/main?logo=Codecov&logoColor=white&style=flat-square"></a>
<a href="https://pypistats.org/packages/finetuner"><img alt="PyPI - Downloads from official pypistats" src="https://img.shields.io/pypi/dm/finetuner?style=flat-square"></a>
<a href="https://slack.jina.ai"><img src="https://img.shields.io/badge/Slack-3.6k-blueviolet?logo=slack&amp;logoColor=white&style=flat-square"></a>
</p>

<!-- start elevator-pitch -->

Fine-tuning is an effective way to improve performance on [neural search](https://jina.ai/news/what-is-neural-search-and-learn-to-build-a-neural-search-engine/) tasks.
However, setting up and performing fine-tuning can be very time-consuming and resource-intensive.

Jina AI's Finetuner makes fine-tuning easier and faster by streamlining the workflow and handling all the complexity and infrastructure in the cloud.
With Finetuner, you can easily enhance the performance of pre-trained models,
making them production-ready [without extensive labeling](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/) or expensive hardware.

🎏 **Better embeddings**: Create high-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems,
clustering, duplication detection, anomaly detection, or other uses.

⏰ **Low budget, high expectations**: Bring considerable improvements to model performance, making the most out of as little as a few hundred training samples, and finish fine-tuning in as little as an hour.

📈 **Performance promise**: Enhance the performance of pre-trained models so that they deliver state-of-the-art performance on 
domain-specific applications.

🔱 **Simple yet powerful**: Easy access to 40+ mainstream loss functions, 10+ optimizers, layer pruning, weight
freezing, dimensionality reduction, hard-negative mining, cross-modal models, and distributed training. 

☁ **All-in-cloud**: Train using our GPU infrastructure, manage runs, experiments, and artifacts on Jina AI Cloud
without worrying about resource availability, complex integration, or infrastructure costs.

<!-- end elevator-pitch -->

## [Documentation](https://finetuner.jina.ai/)

## Benchmarks

<table>
<thead>
  <tr>
    <th>Model</th>
    <th>Task</th>
    <th>Metric</th>
    <th>Pretrained</th>
    <th>Finetuned</th>
    <th>Delta</th>
    <th>Run it!</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td rowspan="2">BERT</td>
    <td rowspan="2"><a href="https://www.kaggle.com/c/quora-question-pairs">Quora</a> Question Answering</td>
    <td>mRR</td>
    <td>0.835</td>
    <td>0.967</td>
    <td><span style="color:green">15.8%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1Ui3Gw3ZL785I7AuzlHv3I0-jTvFFxJ4_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.915</td>
    <td>0.963</td>
    <td><span style="color:green">5.3%</span></td>
  </tr>
  <tr>
    <td rowspan="2">ResNet</td>
    <td rowspan="2">Visual similarity search on <a href="https://sites.google.com/view/totally-looks-like-dataset">TLL</a></td>
    <td>mAP</td>
    <td>0.110</td>
    <td>0.196</td>
    <td><span style="color:green">78.2%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1QuUTy3iVR-kTPljkwplKYaJ-NTCgPEc_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.249</td>
    <td>0.460</td>
    <td><span style="color:green">84.7%</span></td>
  </tr>
  <tr>
    <td rowspan="2">CLIP</td>
    <td rowspan="2"><a href="https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html">Deep Fashion</a> text-to-image search</td>
    <td>mRR</td>
    <td>0.575</td>
    <td>0.676</td>
    <td><span style="color:green">17.4%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1yKnmy2Qotrh3OhgwWRsMWPFwOSAecBxg?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.473</td>
    <td>0.564</td>
    <td><span style="color:green">19.2%</span></td>
  </tr>
  <tr>
    <td rowspan="2">M-CLIP</td>
    <td rowspan="2"><a href="https://xmrec.github.io/">Cross market</a> product recommendation (German)</td>
    <td>mRR</td>
    <td>0.430</td>
    <td>0.648</td>
    <td><span style="color:green">50.7%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/10Wldbu0Zugj7NmQyZwZzuorZ6SSAhtIo"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.247</td>
    <td>0.340</td>
    <td><span style="color:green">37.7%</span></td>
  </tr>
  <tr>
    <td rowspan="2">PointNet++</td>
    <td rowspan="2"><a href="https://modelnet.cs.princeton.edu/">ModelNet40</a> 3D Mesh Search</td>
    <td>mRR</td>
    <td>0.791</td>
    <td>0.891</td>
    <td><span style="color:green">12.7%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1lIMDFkUVsWMshU-akJ_hwzBfJ37zLFzU?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.154</td>
    <td>0.242</td>
    <td><span style="color:green">57.1%</span></td>
  </tr>

</tbody>
</table>

<sub><sup>All metrics were evaluated for k@20 after training for 5 epochs using the Adam optimizer with learning rates of 1e-4 for ResNet, 1e-7 for CLIP and 1e-5 for the BERT models, 5e-4 for PointNet++</sup></sub>

<!-- start install-instruction -->

## Install

Make sure you have Python 3.8+ installed. Finetuner can be installed via `pip` by executing:

```bash
pip install -U finetuner
```

If you want to encode `docarray.DocumentArray` objects with the `finetuner.encode` function, you need to install 
`"finetuner[full]"`. This includes a number of additional dependencies, which are necessary for encoding: Torch, 
Torchvision and OpenCLIP:

```bash
pip install "finetuner[full]"
```

<!-- end install-instruction -->

> ⚠️ Starting with version 0.5.0, Finetuner computing is performed on Jina AI Cloud. The last local version is `0.4.1`. 
> This version is still available for installation via `pip`. See [Finetuner git tags and releases](https://github.com/jina-ai/finetuner/releases).

<!-- start finetuner-articles -->
## Articles about Finetuner

Check out our published blogposts and tutorials to see Finetuner in action!

- [Fine-tuning with Low Budget and High Expectations](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/)
- [Hype and Hybrids: Search is more than Keywords and Vectors](https://jina.ai/news/hype-and-hybrids-multimodal-search-means-more-than-keywords-and-vectors-2/)
- [Improving Search Quality for Non-English Queries with Fine-tuned Multilingual CLIP Models](https://jina.ai/news/improving-search-quality-non-english-queries-fine-tuned-multilingual-clip-models/)
- [How Much Do We Get by Finetuning CLIP?](https://jina.ai/news/applying-jina-ai-finetuner-to-clip-less-data-smaller-models-higher-performance/)

<!-- end finetuner-articles -->

<!-- start support-pitch -->
## Support

- Use [Discussions](https://github.com/jina-ai/finetuner/discussions) to talk about your use cases, questions, and
  support queries.
- Join our [Slack community](https://slack.jina.ai) and chat with other Jina AI community members about ideas.
- Join our [Engineering All Hands](https://youtube.com/playlist?list=PL3UBBWOUVhFYRUa_gpYYKBqEAkO4sxmne) meet-up to discuss your use case and learn Jina AI new features.
    - **When?** The second Tuesday of every month
    - **Where?**
      Zoom ([see our public events calendar](https://calendar.google.com/calendar/embed?src=c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com&ctz=Europe%2FBerlin)/[.ical](https://calendar.google.com/calendar/ical/c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com/public/basic.ics))
      and [live stream on YouTube](https://youtube.com/c/jina-ai)
- Subscribe to the latest video tutorials on our [YouTube channel](https://youtube.com/c/jina-ai)

## Join Us

Finetuner is backed by [Jina AI](https://jina.ai) and licensed under [Apache-2.0](./LICENSE). 

[We are actively hiring](https://jobs.jina.ai) AI engineers and solution engineers to build the next generation of
open-source AI ecosystems.

<!-- end support-pitch -->

%package help
Summary:	Development documents and examples for finetuner
Provides:	python3-finetuner-doc
%description help
<br><br>

<p align="center">
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>


<p align="center">
<b>Task-oriented finetuning for better embeddings on neural search</b>
</p>

<p align=center>
<a href="https://pypi.org/project/finetuner/"><img alt="PyPI" src="https://img.shields.io/pypi/v/finetuner?label=Release&style=flat-square"></a>
<a href="https://codecov.io/gh/jina-ai/finetuner"><img alt="Codecov branch" src="https://img.shields.io/codecov/c/github/jina-ai/finetuner/main?logo=Codecov&logoColor=white&style=flat-square"></a>
<a href="https://pypistats.org/packages/finetuner"><img alt="PyPI - Downloads from official pypistats" src="https://img.shields.io/pypi/dm/finetuner?style=flat-square"></a>
<a href="https://slack.jina.ai"><img src="https://img.shields.io/badge/Slack-3.6k-blueviolet?logo=slack&amp;logoColor=white&style=flat-square"></a>
</p>

<!-- start elevator-pitch -->

Fine-tuning is an effective way to improve performance on [neural search](https://jina.ai/news/what-is-neural-search-and-learn-to-build-a-neural-search-engine/) tasks.
However, setting up and performing fine-tuning can be very time-consuming and resource-intensive.

Jina AI's Finetuner makes fine-tuning easier and faster by streamlining the workflow and handling all the complexity and infrastructure in the cloud.
With Finetuner, you can easily enhance the performance of pre-trained models,
making them production-ready [without extensive labeling](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/) or expensive hardware.

🎏 **Better embeddings**: Create high-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems,
clustering, duplication detection, anomaly detection, or other uses.

⏰ **Low budget, high expectations**: Bring considerable improvements to model performance, making the most out of as little as a few hundred training samples, and finish fine-tuning in as little as an hour.

📈 **Performance promise**: Enhance the performance of pre-trained models so that they deliver state-of-the-art performance on 
domain-specific applications.

🔱 **Simple yet powerful**: Easy access to 40+ mainstream loss functions, 10+ optimizers, layer pruning, weight
freezing, dimensionality reduction, hard-negative mining, cross-modal models, and distributed training. 

☁ **All-in-cloud**: Train using our GPU infrastructure, manage runs, experiments, and artifacts on Jina AI Cloud
without worrying about resource availability, complex integration, or infrastructure costs.

<!-- end elevator-pitch -->

## [Documentation](https://finetuner.jina.ai/)

## Benchmarks

<table>
<thead>
  <tr>
    <th>Model</th>
    <th>Task</th>
    <th>Metric</th>
    <th>Pretrained</th>
    <th>Finetuned</th>
    <th>Delta</th>
    <th>Run it!</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td rowspan="2">BERT</td>
    <td rowspan="2"><a href="https://www.kaggle.com/c/quora-question-pairs">Quora</a> Question Answering</td>
    <td>mRR</td>
    <td>0.835</td>
    <td>0.967</td>
    <td><span style="color:green">15.8%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1Ui3Gw3ZL785I7AuzlHv3I0-jTvFFxJ4_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.915</td>
    <td>0.963</td>
    <td><span style="color:green">5.3%</span></td>
  </tr>
  <tr>
    <td rowspan="2">ResNet</td>
    <td rowspan="2">Visual similarity search on <a href="https://sites.google.com/view/totally-looks-like-dataset">TLL</a></td>
    <td>mAP</td>
    <td>0.110</td>
    <td>0.196</td>
    <td><span style="color:green">78.2%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1QuUTy3iVR-kTPljkwplKYaJ-NTCgPEc_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.249</td>
    <td>0.460</td>
    <td><span style="color:green">84.7%</span></td>
  </tr>
  <tr>
    <td rowspan="2">CLIP</td>
    <td rowspan="2"><a href="https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html">Deep Fashion</a> text-to-image search</td>
    <td>mRR</td>
    <td>0.575</td>
    <td>0.676</td>
    <td><span style="color:green">17.4%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1yKnmy2Qotrh3OhgwWRsMWPFwOSAecBxg?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.473</td>
    <td>0.564</td>
    <td><span style="color:green">19.2%</span></td>
  </tr>
  <tr>
    <td rowspan="2">M-CLIP</td>
    <td rowspan="2"><a href="https://xmrec.github.io/">Cross market</a> product recommendation (German)</td>
    <td>mRR</td>
    <td>0.430</td>
    <td>0.648</td>
    <td><span style="color:green">50.7%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/10Wldbu0Zugj7NmQyZwZzuorZ6SSAhtIo"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.247</td>
    <td>0.340</td>
    <td><span style="color:green">37.7%</span></td>
  </tr>
  <tr>
    <td rowspan="2">PointNet++</td>
    <td rowspan="2"><a href="https://modelnet.cs.princeton.edu/">ModelNet40</a> 3D Mesh Search</td>
    <td>mRR</td>
    <td>0.791</td>
    <td>0.891</td>
    <td><span style="color:green">12.7%</span></td>
    <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1lIMDFkUVsWMshU-akJ_hwzBfJ37zLFzU?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
  </tr>
  <tr>
    <td>Recall</td>
    <td>0.154</td>
    <td>0.242</td>
    <td><span style="color:green">57.1%</span></td>
  </tr>

</tbody>
</table>

<sub><sup>All metrics were evaluated for k@20 after training for 5 epochs using the Adam optimizer with learning rates of 1e-4 for ResNet, 1e-7 for CLIP and 1e-5 for the BERT models, 5e-4 for PointNet++</sup></sub>

<!-- start install-instruction -->

## Install

Make sure you have Python 3.8+ installed. Finetuner can be installed via `pip` by executing:

```bash
pip install -U finetuner
```

If you want to encode `docarray.DocumentArray` objects with the `finetuner.encode` function, you need to install 
`"finetuner[full]"`. This includes a number of additional dependencies, which are necessary for encoding: Torch, 
Torchvision and OpenCLIP:

```bash
pip install "finetuner[full]"
```

<!-- end install-instruction -->

> ⚠️ Starting with version 0.5.0, Finetuner computing is performed on Jina AI Cloud. The last local version is `0.4.1`. 
> This version is still available for installation via `pip`. See [Finetuner git tags and releases](https://github.com/jina-ai/finetuner/releases).

<!-- start finetuner-articles -->
## Articles about Finetuner

Check out our published blogposts and tutorials to see Finetuner in action!

- [Fine-tuning with Low Budget and High Expectations](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/)
- [Hype and Hybrids: Search is more than Keywords and Vectors](https://jina.ai/news/hype-and-hybrids-multimodal-search-means-more-than-keywords-and-vectors-2/)
- [Improving Search Quality for Non-English Queries with Fine-tuned Multilingual CLIP Models](https://jina.ai/news/improving-search-quality-non-english-queries-fine-tuned-multilingual-clip-models/)
- [How Much Do We Get by Finetuning CLIP?](https://jina.ai/news/applying-jina-ai-finetuner-to-clip-less-data-smaller-models-higher-performance/)

<!-- end finetuner-articles -->

<!-- start support-pitch -->
## Support

- Use [Discussions](https://github.com/jina-ai/finetuner/discussions) to talk about your use cases, questions, and
  support queries.
- Join our [Slack community](https://slack.jina.ai) and chat with other Jina AI community members about ideas.
- Join our [Engineering All Hands](https://youtube.com/playlist?list=PL3UBBWOUVhFYRUa_gpYYKBqEAkO4sxmne) meet-up to discuss your use case and learn Jina AI new features.
    - **When?** The second Tuesday of every month
    - **Where?**
      Zoom ([see our public events calendar](https://calendar.google.com/calendar/embed?src=c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com&ctz=Europe%2FBerlin)/[.ical](https://calendar.google.com/calendar/ical/c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com/public/basic.ics))
      and [live stream on YouTube](https://youtube.com/c/jina-ai)
- Subscribe to the latest video tutorials on our [YouTube channel](https://youtube.com/c/jina-ai)

## Join Us

Finetuner is backed by [Jina AI](https://jina.ai) and licensed under [Apache-2.0](./LICENSE). 

[We are actively hiring](https://jobs.jina.ai) AI engineers and solution engineers to build the next generation of
open-source AI ecosystems.

<!-- end support-pitch -->

%prep
%autosetup -n finetuner-0.7.6

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-finetuner -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.7.6-1
- Package Spec generated