1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
%global _empty_manifest_terminate_build 0
Name: python-fingerprints
Version: 1.1.0
Release: 1
Summary: A library to generate entity fingerprints.
License: MIT
URL: http://github.com/alephdata/fingerprints
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1a/4a/953982950ddd39da097c6e527aba8ca080c02cd76577c946295dfe2d02ed/fingerprints-1.1.0.tar.gz
BuildArch: noarch
Requires: python3-normality
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-mypy
Requires: python3-black
Requires: python3-pyyaml
Requires: python3-types-pyyaml
Requires: python3-bump2version
%description
# fingerprints

This library helps with the generation of fingerprints for entity data. A fingerprint
in this context is understood as a simplified entity identifier, derived from it's
name or address and used for cross-referencing of entity across different datasets.
## Usage
```python
import fingerprints
fp = fingerprints.generate('Mr. Sherlock Holmes')
assert fp == 'holmes sherlock'
fp = fingerprints.generate('Siemens Aktiengesellschaft')
assert fp == 'ag siemens'
fp = fingerprints.generate('New York, New York')
assert fp == 'new york'
```
## Company type names
A significant part of what `fingerprints` does it to recognize company legal form
names. For example, `fingerprints` will be able to simplify `Общество с ограниченной ответственностью` to `ООО`, or `Aktiengesellschaft` to `AG`. The required database
is based on two different sources:
* A [Google Spreadsheet](https://docs.google.com/spreadsheets/d/1Cw2xQ3hcZOAgnnzejlY5Sv3OeMxKePTqcRhXQU8rCAw/edit?ts=5e7754cf#gid=0) created by OCCRP.
* The ISO 20275: [Entity Legal Forms Code List](https://www.gleif.org/en/about-lei/code-lists/iso-20275-entity-legal-forms-code-list)
Wikipedia also maintains an index of [types of business entity](https://en.wikipedia.org/wiki/Types_of_business_entity).
## See also
* [Clustering in Depth](https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth), part of the OpenRefine documentation discussing how to create collisions in data clustering.
* [probablepeople](https://github.com/datamade/probablepeople), parser for western names made by the brilliant folks at datamade.us.
%package -n python3-fingerprints
Summary: A library to generate entity fingerprints.
Provides: python-fingerprints
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-fingerprints
# fingerprints

This library helps with the generation of fingerprints for entity data. A fingerprint
in this context is understood as a simplified entity identifier, derived from it's
name or address and used for cross-referencing of entity across different datasets.
## Usage
```python
import fingerprints
fp = fingerprints.generate('Mr. Sherlock Holmes')
assert fp == 'holmes sherlock'
fp = fingerprints.generate('Siemens Aktiengesellschaft')
assert fp == 'ag siemens'
fp = fingerprints.generate('New York, New York')
assert fp == 'new york'
```
## Company type names
A significant part of what `fingerprints` does it to recognize company legal form
names. For example, `fingerprints` will be able to simplify `Общество с ограниченной ответственностью` to `ООО`, or `Aktiengesellschaft` to `AG`. The required database
is based on two different sources:
* A [Google Spreadsheet](https://docs.google.com/spreadsheets/d/1Cw2xQ3hcZOAgnnzejlY5Sv3OeMxKePTqcRhXQU8rCAw/edit?ts=5e7754cf#gid=0) created by OCCRP.
* The ISO 20275: [Entity Legal Forms Code List](https://www.gleif.org/en/about-lei/code-lists/iso-20275-entity-legal-forms-code-list)
Wikipedia also maintains an index of [types of business entity](https://en.wikipedia.org/wiki/Types_of_business_entity).
## See also
* [Clustering in Depth](https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth), part of the OpenRefine documentation discussing how to create collisions in data clustering.
* [probablepeople](https://github.com/datamade/probablepeople), parser for western names made by the brilliant folks at datamade.us.
%package help
Summary: Development documents and examples for fingerprints
Provides: python3-fingerprints-doc
%description help
# fingerprints

This library helps with the generation of fingerprints for entity data. A fingerprint
in this context is understood as a simplified entity identifier, derived from it's
name or address and used for cross-referencing of entity across different datasets.
## Usage
```python
import fingerprints
fp = fingerprints.generate('Mr. Sherlock Holmes')
assert fp == 'holmes sherlock'
fp = fingerprints.generate('Siemens Aktiengesellschaft')
assert fp == 'ag siemens'
fp = fingerprints.generate('New York, New York')
assert fp == 'new york'
```
## Company type names
A significant part of what `fingerprints` does it to recognize company legal form
names. For example, `fingerprints` will be able to simplify `Общество с ограниченной ответственностью` to `ООО`, or `Aktiengesellschaft` to `AG`. The required database
is based on two different sources:
* A [Google Spreadsheet](https://docs.google.com/spreadsheets/d/1Cw2xQ3hcZOAgnnzejlY5Sv3OeMxKePTqcRhXQU8rCAw/edit?ts=5e7754cf#gid=0) created by OCCRP.
* The ISO 20275: [Entity Legal Forms Code List](https://www.gleif.org/en/about-lei/code-lists/iso-20275-entity-legal-forms-code-list)
Wikipedia also maintains an index of [types of business entity](https://en.wikipedia.org/wiki/Types_of_business_entity).
## See also
* [Clustering in Depth](https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth), part of the OpenRefine documentation discussing how to create collisions in data clustering.
* [probablepeople](https://github.com/datamade/probablepeople), parser for western names made by the brilliant folks at datamade.us.
%prep
%autosetup -n fingerprints-1.1.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-fingerprints -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1
- Package Spec generated
|