1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
%global _empty_manifest_terminate_build 0
Name: python-FisherExact
Version: 1.4.2
Release: 1
Summary: Fishe's Exact test for mxn contingency table
License: GPL
URL: https://github.com/maclandrol/FisherExact
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6f/e9/a849764e3da0f166cd1e37c624fc74f918920c72feb72f351854cbfedd94/FisherExact-1.4.2.tar.gz
BuildArch: noarch
%description
table : array_like of ints
A 2x2 contingency table. Elements should be non-negative integers.
alternative : {'two-sided', 'less', 'greater'}, optional
Which alternative hypothesis to the null hypothesis the test uses.
Default is 'two-sided'. Only used in the 2 x 2 case (with the scipy function).
In every other case, the two-sided pval is returned.
mult : int
Specify the size of the workspace used in the network algorithm.
Only used for non-simulated p-values larger than 2 x 2 table.
You might want to increase this if the p-value failed
hybrid : bool
Only used for larger than 2 x 2 tables, in which cases it indicates
whether the exact probabilities (default) or a hybrid approximation
thereof should be computed.
midP : bool
Use this to enable mid-P correction. Could lead to slow computation.
This is not applicable for simulation p-values. `alternative` cannot
be used if you enable midpoint correction.
simulate_pval : bool
Indicate whether to compute p-values by Monte Carlo simulation,
in larger than 2 x 2 tables.
replicate : int
An integer specifying the number of replicates used in the Monte Carlo test.
workspace : int
An integer specifying the workspace size. Default value is 300.
attempt : int
Number of attempts to try, if the workspace size is not enough.
On each attempt, the workspace size is doubled.
seed : int
Random number to use as seed. If a seed isn't provided. 4 bytes will be read
from os.urandom. If this fail, getrandbits of the random module
(with 32 random bits) will be used. In the particular case where both failed,
the current time will be used
%package -n python3-FisherExact
Summary: Fishe's Exact test for mxn contingency table
Provides: python-FisherExact
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-FisherExact
table : array_like of ints
A 2x2 contingency table. Elements should be non-negative integers.
alternative : {'two-sided', 'less', 'greater'}, optional
Which alternative hypothesis to the null hypothesis the test uses.
Default is 'two-sided'. Only used in the 2 x 2 case (with the scipy function).
In every other case, the two-sided pval is returned.
mult : int
Specify the size of the workspace used in the network algorithm.
Only used for non-simulated p-values larger than 2 x 2 table.
You might want to increase this if the p-value failed
hybrid : bool
Only used for larger than 2 x 2 tables, in which cases it indicates
whether the exact probabilities (default) or a hybrid approximation
thereof should be computed.
midP : bool
Use this to enable mid-P correction. Could lead to slow computation.
This is not applicable for simulation p-values. `alternative` cannot
be used if you enable midpoint correction.
simulate_pval : bool
Indicate whether to compute p-values by Monte Carlo simulation,
in larger than 2 x 2 tables.
replicate : int
An integer specifying the number of replicates used in the Monte Carlo test.
workspace : int
An integer specifying the workspace size. Default value is 300.
attempt : int
Number of attempts to try, if the workspace size is not enough.
On each attempt, the workspace size is doubled.
seed : int
Random number to use as seed. If a seed isn't provided. 4 bytes will be read
from os.urandom. If this fail, getrandbits of the random module
(with 32 random bits) will be used. In the particular case where both failed,
the current time will be used
%package help
Summary: Development documents and examples for FisherExact
Provides: python3-FisherExact-doc
%description help
table : array_like of ints
A 2x2 contingency table. Elements should be non-negative integers.
alternative : {'two-sided', 'less', 'greater'}, optional
Which alternative hypothesis to the null hypothesis the test uses.
Default is 'two-sided'. Only used in the 2 x 2 case (with the scipy function).
In every other case, the two-sided pval is returned.
mult : int
Specify the size of the workspace used in the network algorithm.
Only used for non-simulated p-values larger than 2 x 2 table.
You might want to increase this if the p-value failed
hybrid : bool
Only used for larger than 2 x 2 tables, in which cases it indicates
whether the exact probabilities (default) or a hybrid approximation
thereof should be computed.
midP : bool
Use this to enable mid-P correction. Could lead to slow computation.
This is not applicable for simulation p-values. `alternative` cannot
be used if you enable midpoint correction.
simulate_pval : bool
Indicate whether to compute p-values by Monte Carlo simulation,
in larger than 2 x 2 tables.
replicate : int
An integer specifying the number of replicates used in the Monte Carlo test.
workspace : int
An integer specifying the workspace size. Default value is 300.
attempt : int
Number of attempts to try, if the workspace size is not enough.
On each attempt, the workspace size is doubled.
seed : int
Random number to use as seed. If a seed isn't provided. 4 bytes will be read
from os.urandom. If this fail, getrandbits of the random module
(with 32 random bits) will be used. In the particular case where both failed,
the current time will be used
%prep
%autosetup -n FisherExact-1.4.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-FisherExact -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.2-1
- Package Spec generated
|