summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-flaml.spec577
-rw-r--r--sources1
3 files changed, 579 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..c197af3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/FLAML-1.2.0.tar.gz
diff --git a/python-flaml.spec b/python-flaml.spec
new file mode 100644
index 0000000..e50d50e
--- /dev/null
+++ b/python-flaml.spec
@@ -0,0 +1,577 @@
+%global _empty_manifest_terminate_build 0
+Name: python-FLAML
+Version: 1.2.0
+Release: 1
+Summary: A fast library for automated machine learning and tuning
+License: MIT License
+URL: https://github.com/microsoft/FLAML
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/fb/f7/38298ae67a633f668e68bf08cc13d7c401852b036ddfb95098a86315f028/FLAML-1.2.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-NumPy
+Requires: python3-lightgbm
+Requires: python3-xgboost
+Requires: python3-scipy
+Requires: python3-pandas
+Requires: python3-scikit-learn
+Requires: python3-azureml-mlflow
+Requires: python3-catboost
+Requires: python3-psutil
+Requires: python3-xgboost
+Requires: python3-optuna
+Requires: python3-catboost
+Requires: python3-holidays
+Requires: python3-prophet
+Requires: python3-statsmodels
+Requires: python3-hcrystalball
+Requires: python3-pytorch-forecasting
+Requires: python3-transformers[torch]
+Requires: python3-datasets
+Requires: python3-nltk
+Requires: python3-rouge-score
+Requires: python3-seqeval
+Requires: python3-transformers[torch]
+Requires: python3-datasets
+Requires: python3-nltk
+Requires: python3-rouge-score
+Requires: python3-seqeval
+Requires: python3-nni
+Requires: python3-jupyter
+Requires: python3-matplotlib
+Requires: python3-openml
+Requires: python3-openai
+Requires: python3-diskcache
+Requires: python3-optuna
+Requires: python3-ray[tune]
+Requires: python3-pyspark
+Requires: python3-joblibspark
+Requires: python3-joblibspark
+Requires: python3-optuna
+Requires: python3-pyspark
+Requires: python3-flake8
+Requires: python3-thop
+Requires: python3-pytest
+Requires: python3-coverage
+Requires: python3-pre-commit
+Requires: python3-torch
+Requires: python3-torchvision
+Requires: python3-catboost
+Requires: python3-rgf-python
+Requires: python3-optuna
+Requires: python3-openml
+Requires: python3-statsmodels
+Requires: python3-psutil
+Requires: python3-dataclasses
+Requires: python3-transformers[torch]
+Requires: python3-datasets
+Requires: python3-nltk
+Requires: python3-rouge-score
+Requires: python3-hcrystalball
+Requires: python3-seqeval
+Requires: python3-pytorch-forecasting
+Requires: python3-mlflow
+Requires: python3-pyspark
+Requires: python3-joblibspark
+Requires: python3-nbconvert
+Requires: python3-nbformat
+Requires: python3-ipykernel
+Requires: python3-pytorch-lightning
+Requires: python3-holidays
+Requires: python3-prophet
+Requires: python3-statsmodels
+Requires: python3-hcrystalball
+Requires: python3-vowpalwabbit
+
+%description
+[![PyPI version](https://badge.fury.io/py/FLAML.svg)](https://badge.fury.io/py/FLAML)
+![Conda version](https://img.shields.io/conda/vn/conda-forge/flaml)
+[![Build](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml/badge.svg)](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml)
+![Python Version](https://img.shields.io/badge/3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue)
+[![Downloads](https://pepy.tech/badge/flaml)](https://pepy.tech/project/flaml)
+[![Join the chat at https://gitter.im/FLAMLer/community](https://badges.gitter.im/FLAMLer/community.svg)](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
+[![](https://img.shields.io/discord/1025786666260111483?logo=discord&style=flat)](https://discord.gg/Cppx2vSPVP)
+
+
+# A Fast Library for Automated Machine Learning & Tuning
+
+<p align="center">
+ <img src="https://github.com/microsoft/FLAML/blob/main/website/static/img/flaml.svg" width=200>
+ <br>
+</p>
+
+:fire: OpenAI GPT-3 models support in v1.1.3. ChatGPT and GPT-4 support will be added in v1.2.0.
+
+:fire: A [lab forum](https://github.com/microsoft/FLAML/tree/tutorial-aaai23/tutorial) on FLAML at AAAI 2023.
+
+:fire: A [hands-on tutorial](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) on FLAML presented at KDD 2022
+
+## What is FLAML
+FLAML is a lightweight Python library that finds accurate machine
+learning models automatically, efficiently and economically. It frees users from selecting
+models and hyperparameters for each model. It can also be used to tune generic hyperparameters for foundation models, MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on.
+
+1. For common machine learning or AI tasks like classification, regression, and generation, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks, including foundation models such as the GPT series.
+1. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code).
+1. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective
+hyperparameter optimization](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm)
+and model selection method invented by Microsoft Research, and many followup [research studies](https://microsoft.github.io/FLAML/docs/Research).
+
+FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like [Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) Visual Studio extension and the cross-platform [ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli). Alternatively, you can use the [ML.NET AutoML API](https://www.nuget.org/packages/Microsoft.ML.AutoML/#versions-body-tab) for a code-first experience.
+
+
+## Installation
+
+### Python
+
+FLAML requires **Python version >= 3.7**. It can be installed from pip:
+
+```bash
+pip install flaml
+```
+
+To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook),
+install flaml with the [notebook] option:
+
+```bash
+pip install flaml[notebook]
+```
+
+### .NET
+
+Use the following guides to get started with FLAML in .NET:
+
+- [Install Model Builder](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-model-builder?tabs=visual-studio-2022)
+- [Install ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-ml-net-cli?tabs=windows)
+- [Microsoft.AutoML](https://www.nuget.org/packages/Microsoft.ML.AutoML/0.20.0)
+
+## Quickstart
+
+* With three lines of code, you can start using this economical and fast
+AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).
+
+```python
+from flaml import AutoML
+automl = AutoML()
+automl.fit(X_train, y_train, task="classification")
+```
+
+* You can restrict the learners and use FLAML as a fast hyperparameter tuning
+tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).
+
+```python
+automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
+```
+
+* You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).
+
+```python
+from flaml import tune
+tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)
+```
+
+* [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.
+
+```python
+from flaml.default import LGBMRegressor
+
+# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
+estimator = LGBMRegressor()
+# The hyperparameters are automatically set according to the training data.
+estimator.fit(X_train, y_train)
+```
+
+* (New) You can optimize [generations](https://microsoft.github.io/FLAML/docs/Use-Cases/Auto-Generation) by ChatGPT or GPT-4 etc. with your own tuning data, success metrics and budgets.
+
+```python
+from flaml import oai
+
+config, analysis = oai.Completion.tune(
+ data=tune_data,
+ metric="success",
+ mode="max",
+ eval_func=eval_func,
+ inference_budget=0.05,
+ optimization_budget=3,
+ num_samples=-1,
+)
+```
+
+## Documentation
+
+You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples.
+
+In addition, you can find:
+
+- [Talks](https://www.youtube.com/channel/UCfU0zfFXHXdAd5x-WvFBk5A) and [tutorials](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) about FLAML.
+
+- Research around FLAML [here](https://microsoft.github.io/FLAML/docs/Research).
+
+- FAQ [here](https://microsoft.github.io/FLAML/docs/FAQ).
+
+- Contributing guide [here](https://microsoft.github.io/FLAML/docs/Contribute).
+
+- ML.NET documentation and tutorials for [Model Builder](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://learn.microsoft.com/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://learn.microsoft.com/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api).
+
+## Contributing
+
+This project welcomes contributions and suggestions. Most contributions require you to agree to a
+Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
+the rights to use your contribution. For details, visit <https://cla.opensource.microsoft.com>.
+
+If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.
+
+When you submit a pull request, a CLA bot will automatically determine whether you need to provide
+a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
+provided by the bot. You will only need to do this once across all repos using our CLA.
+
+This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
+For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
+contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
+
+
+%package -n python3-FLAML
+Summary: A fast library for automated machine learning and tuning
+Provides: python-FLAML
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-FLAML
+[![PyPI version](https://badge.fury.io/py/FLAML.svg)](https://badge.fury.io/py/FLAML)
+![Conda version](https://img.shields.io/conda/vn/conda-forge/flaml)
+[![Build](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml/badge.svg)](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml)
+![Python Version](https://img.shields.io/badge/3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue)
+[![Downloads](https://pepy.tech/badge/flaml)](https://pepy.tech/project/flaml)
+[![Join the chat at https://gitter.im/FLAMLer/community](https://badges.gitter.im/FLAMLer/community.svg)](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
+[![](https://img.shields.io/discord/1025786666260111483?logo=discord&style=flat)](https://discord.gg/Cppx2vSPVP)
+
+
+# A Fast Library for Automated Machine Learning & Tuning
+
+<p align="center">
+ <img src="https://github.com/microsoft/FLAML/blob/main/website/static/img/flaml.svg" width=200>
+ <br>
+</p>
+
+:fire: OpenAI GPT-3 models support in v1.1.3. ChatGPT and GPT-4 support will be added in v1.2.0.
+
+:fire: A [lab forum](https://github.com/microsoft/FLAML/tree/tutorial-aaai23/tutorial) on FLAML at AAAI 2023.
+
+:fire: A [hands-on tutorial](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) on FLAML presented at KDD 2022
+
+## What is FLAML
+FLAML is a lightweight Python library that finds accurate machine
+learning models automatically, efficiently and economically. It frees users from selecting
+models and hyperparameters for each model. It can also be used to tune generic hyperparameters for foundation models, MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on.
+
+1. For common machine learning or AI tasks like classification, regression, and generation, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks, including foundation models such as the GPT series.
+1. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code).
+1. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective
+hyperparameter optimization](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm)
+and model selection method invented by Microsoft Research, and many followup [research studies](https://microsoft.github.io/FLAML/docs/Research).
+
+FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like [Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) Visual Studio extension and the cross-platform [ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli). Alternatively, you can use the [ML.NET AutoML API](https://www.nuget.org/packages/Microsoft.ML.AutoML/#versions-body-tab) for a code-first experience.
+
+
+## Installation
+
+### Python
+
+FLAML requires **Python version >= 3.7**. It can be installed from pip:
+
+```bash
+pip install flaml
+```
+
+To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook),
+install flaml with the [notebook] option:
+
+```bash
+pip install flaml[notebook]
+```
+
+### .NET
+
+Use the following guides to get started with FLAML in .NET:
+
+- [Install Model Builder](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-model-builder?tabs=visual-studio-2022)
+- [Install ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-ml-net-cli?tabs=windows)
+- [Microsoft.AutoML](https://www.nuget.org/packages/Microsoft.ML.AutoML/0.20.0)
+
+## Quickstart
+
+* With three lines of code, you can start using this economical and fast
+AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).
+
+```python
+from flaml import AutoML
+automl = AutoML()
+automl.fit(X_train, y_train, task="classification")
+```
+
+* You can restrict the learners and use FLAML as a fast hyperparameter tuning
+tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).
+
+```python
+automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
+```
+
+* You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).
+
+```python
+from flaml import tune
+tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)
+```
+
+* [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.
+
+```python
+from flaml.default import LGBMRegressor
+
+# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
+estimator = LGBMRegressor()
+# The hyperparameters are automatically set according to the training data.
+estimator.fit(X_train, y_train)
+```
+
+* (New) You can optimize [generations](https://microsoft.github.io/FLAML/docs/Use-Cases/Auto-Generation) by ChatGPT or GPT-4 etc. with your own tuning data, success metrics and budgets.
+
+```python
+from flaml import oai
+
+config, analysis = oai.Completion.tune(
+ data=tune_data,
+ metric="success",
+ mode="max",
+ eval_func=eval_func,
+ inference_budget=0.05,
+ optimization_budget=3,
+ num_samples=-1,
+)
+```
+
+## Documentation
+
+You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples.
+
+In addition, you can find:
+
+- [Talks](https://www.youtube.com/channel/UCfU0zfFXHXdAd5x-WvFBk5A) and [tutorials](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) about FLAML.
+
+- Research around FLAML [here](https://microsoft.github.io/FLAML/docs/Research).
+
+- FAQ [here](https://microsoft.github.io/FLAML/docs/FAQ).
+
+- Contributing guide [here](https://microsoft.github.io/FLAML/docs/Contribute).
+
+- ML.NET documentation and tutorials for [Model Builder](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://learn.microsoft.com/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://learn.microsoft.com/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api).
+
+## Contributing
+
+This project welcomes contributions and suggestions. Most contributions require you to agree to a
+Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
+the rights to use your contribution. For details, visit <https://cla.opensource.microsoft.com>.
+
+If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.
+
+When you submit a pull request, a CLA bot will automatically determine whether you need to provide
+a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
+provided by the bot. You will only need to do this once across all repos using our CLA.
+
+This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
+For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
+contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
+
+
+%package help
+Summary: Development documents and examples for FLAML
+Provides: python3-FLAML-doc
+%description help
+[![PyPI version](https://badge.fury.io/py/FLAML.svg)](https://badge.fury.io/py/FLAML)
+![Conda version](https://img.shields.io/conda/vn/conda-forge/flaml)
+[![Build](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml/badge.svg)](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml)
+![Python Version](https://img.shields.io/badge/3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue)
+[![Downloads](https://pepy.tech/badge/flaml)](https://pepy.tech/project/flaml)
+[![Join the chat at https://gitter.im/FLAMLer/community](https://badges.gitter.im/FLAMLer/community.svg)](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
+[![](https://img.shields.io/discord/1025786666260111483?logo=discord&style=flat)](https://discord.gg/Cppx2vSPVP)
+
+
+# A Fast Library for Automated Machine Learning & Tuning
+
+<p align="center">
+ <img src="https://github.com/microsoft/FLAML/blob/main/website/static/img/flaml.svg" width=200>
+ <br>
+</p>
+
+:fire: OpenAI GPT-3 models support in v1.1.3. ChatGPT and GPT-4 support will be added in v1.2.0.
+
+:fire: A [lab forum](https://github.com/microsoft/FLAML/tree/tutorial-aaai23/tutorial) on FLAML at AAAI 2023.
+
+:fire: A [hands-on tutorial](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) on FLAML presented at KDD 2022
+
+## What is FLAML
+FLAML is a lightweight Python library that finds accurate machine
+learning models automatically, efficiently and economically. It frees users from selecting
+models and hyperparameters for each model. It can also be used to tune generic hyperparameters for foundation models, MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on.
+
+1. For common machine learning or AI tasks like classification, regression, and generation, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks, including foundation models such as the GPT series.
+1. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code).
+1. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective
+hyperparameter optimization](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm)
+and model selection method invented by Microsoft Research, and many followup [research studies](https://microsoft.github.io/FLAML/docs/Research).
+
+FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like [Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) Visual Studio extension and the cross-platform [ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli). Alternatively, you can use the [ML.NET AutoML API](https://www.nuget.org/packages/Microsoft.ML.AutoML/#versions-body-tab) for a code-first experience.
+
+
+## Installation
+
+### Python
+
+FLAML requires **Python version >= 3.7**. It can be installed from pip:
+
+```bash
+pip install flaml
+```
+
+To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook),
+install flaml with the [notebook] option:
+
+```bash
+pip install flaml[notebook]
+```
+
+### .NET
+
+Use the following guides to get started with FLAML in .NET:
+
+- [Install Model Builder](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-model-builder?tabs=visual-studio-2022)
+- [Install ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-ml-net-cli?tabs=windows)
+- [Microsoft.AutoML](https://www.nuget.org/packages/Microsoft.ML.AutoML/0.20.0)
+
+## Quickstart
+
+* With three lines of code, you can start using this economical and fast
+AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).
+
+```python
+from flaml import AutoML
+automl = AutoML()
+automl.fit(X_train, y_train, task="classification")
+```
+
+* You can restrict the learners and use FLAML as a fast hyperparameter tuning
+tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).
+
+```python
+automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
+```
+
+* You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).
+
+```python
+from flaml import tune
+tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)
+```
+
+* [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.
+
+```python
+from flaml.default import LGBMRegressor
+
+# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
+estimator = LGBMRegressor()
+# The hyperparameters are automatically set according to the training data.
+estimator.fit(X_train, y_train)
+```
+
+* (New) You can optimize [generations](https://microsoft.github.io/FLAML/docs/Use-Cases/Auto-Generation) by ChatGPT or GPT-4 etc. with your own tuning data, success metrics and budgets.
+
+```python
+from flaml import oai
+
+config, analysis = oai.Completion.tune(
+ data=tune_data,
+ metric="success",
+ mode="max",
+ eval_func=eval_func,
+ inference_budget=0.05,
+ optimization_budget=3,
+ num_samples=-1,
+)
+```
+
+## Documentation
+
+You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples.
+
+In addition, you can find:
+
+- [Talks](https://www.youtube.com/channel/UCfU0zfFXHXdAd5x-WvFBk5A) and [tutorials](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) about FLAML.
+
+- Research around FLAML [here](https://microsoft.github.io/FLAML/docs/Research).
+
+- FAQ [here](https://microsoft.github.io/FLAML/docs/FAQ).
+
+- Contributing guide [here](https://microsoft.github.io/FLAML/docs/Contribute).
+
+- ML.NET documentation and tutorials for [Model Builder](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://learn.microsoft.com/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://learn.microsoft.com/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api).
+
+## Contributing
+
+This project welcomes contributions and suggestions. Most contributions require you to agree to a
+Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
+the rights to use your contribution. For details, visit <https://cla.opensource.microsoft.com>.
+
+If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.
+
+When you submit a pull request, a CLA bot will automatically determine whether you need to provide
+a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
+provided by the bot. You will only need to do this once across all repos using our CLA.
+
+This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
+For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
+contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
+
+
+%prep
+%autosetup -n FLAML-1.2.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-FLAML -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..2fa0238
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+603b39a2165f7fa4c9de70f38f3726cc FLAML-1.2.0.tar.gz