1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
|
%global _empty_manifest_terminate_build 0
Name: python-FLAML
Version: 1.2.0
Release: 1
Summary: A fast library for automated machine learning and tuning
License: MIT License
URL: https://github.com/microsoft/FLAML
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/fb/f7/38298ae67a633f668e68bf08cc13d7c401852b036ddfb95098a86315f028/FLAML-1.2.0.tar.gz
BuildArch: noarch
Requires: python3-NumPy
Requires: python3-lightgbm
Requires: python3-xgboost
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-scikit-learn
Requires: python3-azureml-mlflow
Requires: python3-catboost
Requires: python3-psutil
Requires: python3-xgboost
Requires: python3-optuna
Requires: python3-catboost
Requires: python3-holidays
Requires: python3-prophet
Requires: python3-statsmodels
Requires: python3-hcrystalball
Requires: python3-pytorch-forecasting
Requires: python3-transformers[torch]
Requires: python3-datasets
Requires: python3-nltk
Requires: python3-rouge-score
Requires: python3-seqeval
Requires: python3-transformers[torch]
Requires: python3-datasets
Requires: python3-nltk
Requires: python3-rouge-score
Requires: python3-seqeval
Requires: python3-nni
Requires: python3-jupyter
Requires: python3-matplotlib
Requires: python3-openml
Requires: python3-openai
Requires: python3-diskcache
Requires: python3-optuna
Requires: python3-ray[tune]
Requires: python3-pyspark
Requires: python3-joblibspark
Requires: python3-joblibspark
Requires: python3-optuna
Requires: python3-pyspark
Requires: python3-flake8
Requires: python3-thop
Requires: python3-pytest
Requires: python3-coverage
Requires: python3-pre-commit
Requires: python3-torch
Requires: python3-torchvision
Requires: python3-catboost
Requires: python3-rgf-python
Requires: python3-optuna
Requires: python3-openml
Requires: python3-statsmodels
Requires: python3-psutil
Requires: python3-dataclasses
Requires: python3-transformers[torch]
Requires: python3-datasets
Requires: python3-nltk
Requires: python3-rouge-score
Requires: python3-hcrystalball
Requires: python3-seqeval
Requires: python3-pytorch-forecasting
Requires: python3-mlflow
Requires: python3-pyspark
Requires: python3-joblibspark
Requires: python3-nbconvert
Requires: python3-nbformat
Requires: python3-ipykernel
Requires: python3-pytorch-lightning
Requires: python3-holidays
Requires: python3-prophet
Requires: python3-statsmodels
Requires: python3-hcrystalball
Requires: python3-vowpalwabbit
%description
[](https://badge.fury.io/py/FLAML)

[](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml)

[](https://pepy.tech/project/flaml)
[](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
[](https://discord.gg/Cppx2vSPVP)
# A Fast Library for Automated Machine Learning & Tuning
<p align="center">
<img src="https://github.com/microsoft/FLAML/blob/main/website/static/img/flaml.svg" width=200>
<br>
</p>
:fire: OpenAI GPT-3 models support in v1.1.3. ChatGPT and GPT-4 support will be added in v1.2.0.
:fire: A [lab forum](https://github.com/microsoft/FLAML/tree/tutorial-aaai23/tutorial) on FLAML at AAAI 2023.
:fire: A [hands-on tutorial](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) on FLAML presented at KDD 2022
## What is FLAML
FLAML is a lightweight Python library that finds accurate machine
learning models automatically, efficiently and economically. It frees users from selecting
models and hyperparameters for each model. It can also be used to tune generic hyperparameters for foundation models, MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on.
1. For common machine learning or AI tasks like classification, regression, and generation, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks, including foundation models such as the GPT series.
1. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code).
1. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective
hyperparameter optimization](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm)
and model selection method invented by Microsoft Research, and many followup [research studies](https://microsoft.github.io/FLAML/docs/Research).
FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like [Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) Visual Studio extension and the cross-platform [ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli). Alternatively, you can use the [ML.NET AutoML API](https://www.nuget.org/packages/Microsoft.ML.AutoML/#versions-body-tab) for a code-first experience.
## Installation
### Python
FLAML requires **Python version >= 3.7**. It can be installed from pip:
```bash
pip install flaml
```
To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook),
install flaml with the [notebook] option:
```bash
pip install flaml[notebook]
```
### .NET
Use the following guides to get started with FLAML in .NET:
- [Install Model Builder](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-model-builder?tabs=visual-studio-2022)
- [Install ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-ml-net-cli?tabs=windows)
- [Microsoft.AutoML](https://www.nuget.org/packages/Microsoft.ML.AutoML/0.20.0)
## Quickstart
* With three lines of code, you can start using this economical and fast
AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).
```python
from flaml import AutoML
automl = AutoML()
automl.fit(X_train, y_train, task="classification")
```
* You can restrict the learners and use FLAML as a fast hyperparameter tuning
tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).
```python
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
```
* You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).
```python
from flaml import tune
tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)
```
* [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.
```python
from flaml.default import LGBMRegressor
# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
estimator = LGBMRegressor()
# The hyperparameters are automatically set according to the training data.
estimator.fit(X_train, y_train)
```
* (New) You can optimize [generations](https://microsoft.github.io/FLAML/docs/Use-Cases/Auto-Generation) by ChatGPT or GPT-4 etc. with your own tuning data, success metrics and budgets.
```python
from flaml import oai
config, analysis = oai.Completion.tune(
data=tune_data,
metric="success",
mode="max",
eval_func=eval_func,
inference_budget=0.05,
optimization_budget=3,
num_samples=-1,
)
```
## Documentation
You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples.
In addition, you can find:
- [Talks](https://www.youtube.com/channel/UCfU0zfFXHXdAd5x-WvFBk5A) and [tutorials](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) about FLAML.
- Research around FLAML [here](https://microsoft.github.io/FLAML/docs/Research).
- FAQ [here](https://microsoft.github.io/FLAML/docs/FAQ).
- Contributing guide [here](https://microsoft.github.io/FLAML/docs/Contribute).
- ML.NET documentation and tutorials for [Model Builder](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://learn.microsoft.com/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://learn.microsoft.com/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api).
## Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit <https://cla.opensource.microsoft.com>.
If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
%package -n python3-FLAML
Summary: A fast library for automated machine learning and tuning
Provides: python-FLAML
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-FLAML
[](https://badge.fury.io/py/FLAML)

[](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml)

[](https://pepy.tech/project/flaml)
[](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
[](https://discord.gg/Cppx2vSPVP)
# A Fast Library for Automated Machine Learning & Tuning
<p align="center">
<img src="https://github.com/microsoft/FLAML/blob/main/website/static/img/flaml.svg" width=200>
<br>
</p>
:fire: OpenAI GPT-3 models support in v1.1.3. ChatGPT and GPT-4 support will be added in v1.2.0.
:fire: A [lab forum](https://github.com/microsoft/FLAML/tree/tutorial-aaai23/tutorial) on FLAML at AAAI 2023.
:fire: A [hands-on tutorial](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) on FLAML presented at KDD 2022
## What is FLAML
FLAML is a lightweight Python library that finds accurate machine
learning models automatically, efficiently and economically. It frees users from selecting
models and hyperparameters for each model. It can also be used to tune generic hyperparameters for foundation models, MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on.
1. For common machine learning or AI tasks like classification, regression, and generation, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks, including foundation models such as the GPT series.
1. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code).
1. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective
hyperparameter optimization](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm)
and model selection method invented by Microsoft Research, and many followup [research studies](https://microsoft.github.io/FLAML/docs/Research).
FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like [Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) Visual Studio extension and the cross-platform [ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli). Alternatively, you can use the [ML.NET AutoML API](https://www.nuget.org/packages/Microsoft.ML.AutoML/#versions-body-tab) for a code-first experience.
## Installation
### Python
FLAML requires **Python version >= 3.7**. It can be installed from pip:
```bash
pip install flaml
```
To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook),
install flaml with the [notebook] option:
```bash
pip install flaml[notebook]
```
### .NET
Use the following guides to get started with FLAML in .NET:
- [Install Model Builder](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-model-builder?tabs=visual-studio-2022)
- [Install ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-ml-net-cli?tabs=windows)
- [Microsoft.AutoML](https://www.nuget.org/packages/Microsoft.ML.AutoML/0.20.0)
## Quickstart
* With three lines of code, you can start using this economical and fast
AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).
```python
from flaml import AutoML
automl = AutoML()
automl.fit(X_train, y_train, task="classification")
```
* You can restrict the learners and use FLAML as a fast hyperparameter tuning
tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).
```python
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
```
* You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).
```python
from flaml import tune
tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)
```
* [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.
```python
from flaml.default import LGBMRegressor
# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
estimator = LGBMRegressor()
# The hyperparameters are automatically set according to the training data.
estimator.fit(X_train, y_train)
```
* (New) You can optimize [generations](https://microsoft.github.io/FLAML/docs/Use-Cases/Auto-Generation) by ChatGPT or GPT-4 etc. with your own tuning data, success metrics and budgets.
```python
from flaml import oai
config, analysis = oai.Completion.tune(
data=tune_data,
metric="success",
mode="max",
eval_func=eval_func,
inference_budget=0.05,
optimization_budget=3,
num_samples=-1,
)
```
## Documentation
You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples.
In addition, you can find:
- [Talks](https://www.youtube.com/channel/UCfU0zfFXHXdAd5x-WvFBk5A) and [tutorials](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) about FLAML.
- Research around FLAML [here](https://microsoft.github.io/FLAML/docs/Research).
- FAQ [here](https://microsoft.github.io/FLAML/docs/FAQ).
- Contributing guide [here](https://microsoft.github.io/FLAML/docs/Contribute).
- ML.NET documentation and tutorials for [Model Builder](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://learn.microsoft.com/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://learn.microsoft.com/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api).
## Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit <https://cla.opensource.microsoft.com>.
If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
%package help
Summary: Development documents and examples for FLAML
Provides: python3-FLAML-doc
%description help
[](https://badge.fury.io/py/FLAML)

[](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml)

[](https://pepy.tech/project/flaml)
[](https://gitter.im/FLAMLer/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
[](https://discord.gg/Cppx2vSPVP)
# A Fast Library for Automated Machine Learning & Tuning
<p align="center">
<img src="https://github.com/microsoft/FLAML/blob/main/website/static/img/flaml.svg" width=200>
<br>
</p>
:fire: OpenAI GPT-3 models support in v1.1.3. ChatGPT and GPT-4 support will be added in v1.2.0.
:fire: A [lab forum](https://github.com/microsoft/FLAML/tree/tutorial-aaai23/tutorial) on FLAML at AAAI 2023.
:fire: A [hands-on tutorial](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) on FLAML presented at KDD 2022
## What is FLAML
FLAML is a lightweight Python library that finds accurate machine
learning models automatically, efficiently and economically. It frees users from selecting
models and hyperparameters for each model. It can also be used to tune generic hyperparameters for foundation models, MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on.
1. For common machine learning or AI tasks like classification, regression, and generation, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks, including foundation models such as the GPT series.
1. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code).
1. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective
hyperparameter optimization](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm)
and model selection method invented by Microsoft Research, and many followup [research studies](https://microsoft.github.io/FLAML/docs/Research).
FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like [Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) Visual Studio extension and the cross-platform [ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli). Alternatively, you can use the [ML.NET AutoML API](https://www.nuget.org/packages/Microsoft.ML.AutoML/#versions-body-tab) for a code-first experience.
## Installation
### Python
FLAML requires **Python version >= 3.7**. It can be installed from pip:
```bash
pip install flaml
```
To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook),
install flaml with the [notebook] option:
```bash
pip install flaml[notebook]
```
### .NET
Use the following guides to get started with FLAML in .NET:
- [Install Model Builder](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-model-builder?tabs=visual-studio-2022)
- [Install ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-ml-net-cli?tabs=windows)
- [Microsoft.AutoML](https://www.nuget.org/packages/Microsoft.ML.AutoML/0.20.0)
## Quickstart
* With three lines of code, you can start using this economical and fast
AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).
```python
from flaml import AutoML
automl = AutoML()
automl.fit(X_train, y_train, task="classification")
```
* You can restrict the learners and use FLAML as a fast hyperparameter tuning
tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).
```python
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
```
* You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).
```python
from flaml import tune
tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)
```
* [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.
```python
from flaml.default import LGBMRegressor
# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
estimator = LGBMRegressor()
# The hyperparameters are automatically set according to the training data.
estimator.fit(X_train, y_train)
```
* (New) You can optimize [generations](https://microsoft.github.io/FLAML/docs/Use-Cases/Auto-Generation) by ChatGPT or GPT-4 etc. with your own tuning data, success metrics and budgets.
```python
from flaml import oai
config, analysis = oai.Completion.tune(
data=tune_data,
metric="success",
mode="max",
eval_func=eval_func,
inference_budget=0.05,
optimization_budget=3,
num_samples=-1,
)
```
## Documentation
You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples.
In addition, you can find:
- [Talks](https://www.youtube.com/channel/UCfU0zfFXHXdAd5x-WvFBk5A) and [tutorials](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) about FLAML.
- Research around FLAML [here](https://microsoft.github.io/FLAML/docs/Research).
- FAQ [here](https://microsoft.github.io/FLAML/docs/FAQ).
- Contributing guide [here](https://microsoft.github.io/FLAML/docs/Contribute).
- ML.NET documentation and tutorials for [Model Builder](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://learn.microsoft.com/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://learn.microsoft.com/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api).
## Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit <https://cla.opensource.microsoft.com>.
If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
%prep
%autosetup -n FLAML-1.2.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-FLAML -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.0-1
- Package Spec generated
|