1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
|
%global _empty_manifest_terminate_build 0
Name: python-flask-unittest
Version: 0.1.3
Release: 1
Summary: Unit testing flask applications made easy!
License: MIT
URL: https://github.com/TotallyNotChase/flask-unittest
Source0: https://mirrors.aliyun.com/pypi/web/packages/ce/65/8858ad436da94463af0c36bbbf9c42a893d0cfe0c788f6ab64dba739c86b/flask-unittest-0.1.3.tar.gz
BuildArch: noarch
Requires: python3-Flask
%description
# flask-unittest
A hassle free solution to testing flask application using `unittest`
Provides functionality for testing using the `Flask` object, the `FlaskClient` object, a combination of the two, or even a live flask server!
This library is intended to provide utilities that help the user follow the [official flask application testing guidelines](https://flask.palletsprojects.com/en/1.1.x/testing/). It is recommended you familiarize yourself with that page.
Unless you're interested in testing a live flask server using a headless browser. In which case, familiarity with your preferred headless browser is enough.
# Features
* Test flask applications using a `Flask` object
* Access to `app_context`, `test_request_context` etc
* Access to flask globals like `g`, `request`, and `session`
* Access to `test_client` through the `Flask` object
* Same `Flask` object will be usable in the test method and its corresponding `setUp` and `tearDown` methods
* App is created per test method in the testcase
* Test flask applications using a `FlaskClient` object
* Access to flask globals like `g`, `request`, and `session`
* Test your flask app in an **API centric way** using the functionality provided by `FlaskClient`
* Same `FlaskClient` object will be usable in the test method and its corresponding `setUp` and `tearDown` methods
* The `FlaskClient` is created per test method of the testcase by using the given `Flask` object (App)
* App can either be a constant class property throughout the testcase, or be created per test method
* Test flask applications running *live* on localhost - using your preferred **headless browser** (e.g `selenium`, `pyppeteer` etc)
* Contrary to the previous ones, this functionality is handled by a test suite, rather than a test case
* The flask server is started in a daemon thread when the `LiveTestSuite` runs - it runs for the duration of the program
* Simple access to the context so you can access flask globals (`g`, `request`, and `session`) with minimal headaches and no gotchas!
* Support for using generators as `create_app` - essentially emulating `pytest`'s fixtures (more of that in `example/tests/`)
* No extra dependencies! (well, except for `flask`...) - easily integratable with the built in `unittest` module
# Quick Start
Install `flask-unittest` from pypi using `pip`
```bash
pip install flask-unittest
```
Import in your module and start testing!
```py
import flask_unittest
```
Now, before moving on to the examples below - I **highly recommend** checking out the official [Testing Flask Applications example](https://flask.palletsprojects.com/en/1.1.x/testing/). It's *extremely simple* and should take only 5 minutes to digest.
Alternatively, you can directly dive into the examples at [`tests/`](./tests/) and [`example/tests/`](./example/tests). Though this might be a bit intimidating if you're just starting out at testing flask apps.
**NOTE**: For all the following testcases using `FlaskClient`, it is recommended to set `.testing` on your `Flask` app to `True` (i.e `app.testing = True`)
# Test using `FlaskClient`
If you want to use a [`FlaskClient`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.test_client) object to test - this is the testcase for you!
This testcase creates a `FlaskClient` object for each test method. But the `app` property is kept constant.
```py
import flask_unittest
import flask.globals
class TestFoo(flask_unittest.ClientTestCase):
# Assign the `Flask` app object
app = ...
def setUp(self, client):
# Perform set up before each test, using client
pass
def tearDown(self, client):
# Perform tear down after each test, using client
pass
'''
Note: the setUp and tearDown method don't need to be explicitly declared
if they don't do anything (like in here) - this is just an example
Only declare the setUp and tearDown methods with a body, same as regular unittest testcases
'''
def test_foo_with_client(self, client):
# Use the client here
# Example request to a route returning "hello world" (on a hypothetical app)
rv = client.get('/hello')
self.assertInResponse(rv, 'hello world!')
def test_bar_with_client(self, client):
# Use the client here
# Example login request (on a hypothetical app)
rv = client.post('/login', {'username': 'pinkerton', 'password': 'secret_key'})
# Make sure rv is a redirect request to index page
self.assertLocationHeader('http://localhost/')
# Make sure session is set
self.assertIn('user_id', flask.globals.session)
```
Remember to assign a correctly configured `Flask` app object to `app`!
Each test method, as well as the `setUp` and `tearDown` methods, should take `client` as a parameter. You can name this parameter whatever you want of course but the 2nd parameter (including `self` as first) is a `FlaskClient` object.
Note that the `client` is different for *each test method*. But it's the same for a singular test method and its corresponding `setUp` and `tearDown` methods.
What does this mean? Well, when it's time to run `test_foo_with_client`, a `FlaskClient` object is created using `app.test_client()`. Then this is passed to `setUp`, which does its job of setup. After that, the same `client` is passed to `test_foo_with_client`, which does the testing. Finally, the same `client` again, is passed to `tearDown` - which cleans the stuff up.
Now when it's time to run `test_bar_with_client`, a new `FlaskClient` object is created and so on.
This essentially means that any global changes (such as `session` and cookies) you perform in `setUp` using `client`, will be persistent in the actual test method. And the changes in the test method will be persistent in the `tearDown`. These changes get destroyed in the next test method, where a new `FlaskClient` object is created.
**NOTE**: If you want to **disable** the use of cookies on `client`, you need to put `test_client_use_cookies = False` in your testcase body.
You can also pass in extra kwargs to the `test_client()` call by setting `test_client_kwargs` in your testcase body.
**Full Example**: [`flask_client_test.py`](./tests/flask_client_test.py)
# Test using `Flask`
If you want to use a [`Flask`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask) object to test - this is the testcase for you!
This testcase creates a `Flask` object for each test method, using the `create_app` method implemented by the user
```py
import flask_unittest
from flaskr.db import get_db
class TestFoo(flask_unittest.AppTestCase):
def create_app(self):
# Return/Yield a `Flask` object here
pass
def setUp(self, app):
# Perform set up before each test, using app
pass
def tearDown(self, app):
# Perform tear down after each test, using app
pass
'''
Note: the setUp and tearDown method don't need to be explicitly declared
if they don't do anything (like in here) - this is just an example
Only declare the setUp and tearDown methods with a body, same as regular unittest testcases
'''
def test_foo_with_app(self, app):
# Use the app here
# Example of using test_request_context (on a hypothetical app)
with app.test_request_context('/1/update'):
self.assertEqual(request.endpoint, 'blog.update')
def test_bar_with_app(self, app):
# Use the app here
# Example of using client from app (on a hypothetical app)
with app.test_client() as client:
rv = client.get('/hello')
self.assertInResponse(rv, 'hello world!')
def test_baz_with_app(self, app):
# Use the app here
# Example of using app_context (on a hypothetical app)
with app.app_context():
get_db().execute("INSERT INTO user (username, password) VALUES ('test', 'testpass');")
```
The `create_app` function should return a correctly configured `Flask` object representing the webapp to test
You can also do any set up, extra config for the app (db init etc) here
It's also possible (and encouraged) to `yield` a `Flask` object here instead of `return`ing one (essentially making this a generator function)
This way, you can put cleanup right here after the `yield` and they will be executed once the test method has run
See [Emulating official flask testing example using `flask-unittest`](#emulating-official-flask-testing-example-using-flask-unittest)
Each test method, as well as the `setUp` and `tearDown` methods, should take `app` as a parameter. You can name this parameter whatever you want of course but the 2nd parameter (including `self` as first) is a `Flask` object returned/yielded from the user provided `create_app`.
Note that the `app` is different for *each test method*. But it's the same for a singular test method and its corresponding `setUp` and `tearDown` methods.
What does this mean? Well, when it's time to run `test_foo_with_app`, a `Flask` object is created using `create_app`. Then this is passed to `setUp`, which does its job of setup. After that, the same `app` is passed to `test_foo_with_app`, which does the testing. Finally, the same `app` again, is passed to `tearDown` - which cleans the stuff up.
Now when it's time to run `test_bar_with_app` - `create_app` is called again and a new `Flask` object is created and so on.
If `create_app` is a generator function. All the stuff after `yield app` will be executed after the test method (and its `tearDown`, if any) has run
**Full Example**: [`flask_app_test.py`](./tests/flask_app_test.py)
# Test using both `Flask` and `FlaskClient`
If you want to use both [`Flask`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask) *and* [`FlaskClient`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.test_client) to test - this is the testcase for you!
This testcase creates a `Flask` object, using the `create_app` method implemented by the user, *and* a `FlaskClient` object from said `Flask` object, for each test method
```py
import flask_unittest
from flaskr import get_db
class TestFoo(flask_unittest.AppClientTestCase):
def create_app(self):
# Return/Yield a `Flask` object here
pass
def setUp(self, app, client):
# Perform set up before each test, using app and client
pass
def tearDown(self, app, client):
# Perform tear down after each test, using app and client
pass
'''
Note: the setUp and tearDown method don't need to be explicitly declared
if they don't do anything (like in here) - this is just an example
Only declare the setUp and tearDown methods with a body, same as regular unittest testcases
'''
def test_foo_with_both(self, app, client):
# Use the app and client here
# Example of registering a user and checking if the entry exists in db (on a hypothetical app)
response = client.post('/auth/register', data={'username': 'a', 'password': 'a'})
self.assertLocationHeader(response, 'http://localhost/auth/login')
# test that the user was inserted into the database
with app.app_context():
self.assertIsNotNone(get_db().execute("select * from user where username = 'a'").fetchone())
def test_bar_with_both(self, app, client):
# Use the app and client here
# Example of creating a post and checking if the entry exists in db (on a hypothetical app)
client.post('/create', data={'title': 'created', 'body': ''})
with app.app_context():
db = get_db()
count = db.execute('SELECT COUNT(id) FROM post').fetchone()[0]
self.assertEqual(count, 2)
```
The `create_app` function should return a correctly configured `Flask` object representing the webapp to test
You can also do any set up, extra config for the app (db init etc) here
It's also possible (and encouraged) to `yield` a `Flask` object here instead of `return`ing one (essentially making this a generator function)
This way, you can put cleanup right here after the `yield` and they will be executed once the test method has run
See [Emulating official flask testing example using `flask-unittest`](#emulating-official-flask-testing-example-using-flask-unittest)
Each test method, as well as the `setUp` and `tearDown` methods, should take `app` and `client` as a parameter. You can name these parameters whatever you want of course but the 2nd parameter (including `self` as first) is a `Flask` object returned/yielded from the user provided `create_app`, and the third parameter is a `FlaskClient` object returned from calling `.test_client` on said `Flask` object.
Note that the `app` and `client` are different for *each test method*. But they are the same for a singular test method and its corresponding `setUp` and `tearDown` methods.
What does this mean? Well, when it's time to run `test_foo_with_both`, a `Flask` object is created using `create_app()`, and a `FlaskClient` object is created from it. Then they are passed to `setUp`, which does its job of setup. After that, the same `app` and `client` are passed to `test_foo_with_both`, which does the testing. Finally, the same `app` and `client` again, are passed to `tearDown` - which cleans the stuff up.
Now when it's time to run `test_bar_with_app` - `create_app` is called again to create a new `Flask` object, and also `.test_client` to create a new `FlaskClient` object and so on.
If `create_app` is a generator function. All the stuff after `yield app` will be executed after the test method (and its `tearDown` if any) has run
**Full Example**: [`flask_appclient_test.py`](./tests/flask_appclient_test.py)
# Test using a headless browser (eg `selenium`, `pyppeteer` etc)
If you want to test a live flask server using a headless browser - `LiveTestSuite` is for you!
Unlike the previous ones, this functionality relies on the use of a **suite**, *not a testcase*. The testcases should inherit from `LiveTestCase` but the real juice is in `LiveTestSuite`.
An example testcase for this would look like-
```py
import flask_unittest
from selenium.webdriver import Chrome, ChromeOptions
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
class TestFoo(flask_unittest.LiveTestCase):
driver: Union[Chrome, None] = None
std_wait: Union[WebDriverWait, None] = None
### setUpClass and tearDownClass for the entire class
# Not quite mandatory, but this is the best place to set up and tear down selenium
@classmethod
def setUpClass(cls):
# Initiate the selenium webdriver
options = ChromeOptions()
options.add_argument('--headless')
cls.driver = Chrome(options=options)
cls.std_wait = WebDriverWait(cls.driver, 5)
@classmethod
def tearDownClass(cls):
# Quit the webdriver
cls.driver.quit()
### Actual test methods
def test_foo_with_driver(self):
# Use self.driver here
# You also have access to self.server_url and self.app
# Example of using selenium to go to index page and try to find some elements (on a hypothetical app)
self.driver.get(self.server_url)
self.std_wait.until(EC.presence_of_element_located((By.LINK_TEXT, 'Register')))
self.std_wait.until(EC.presence_of_element_located((By.LINK_TEXT, 'Log In')))
```
This is pretty straight forward, it's just a regular test case that you would use if you spawned the flask server from the terminal before running tests
Now, you need to use the `LiveTestSuite` to run this. The previous testcases could be run using `unitttest.TestSuite`, or simply `unittest.main` but this *has to be* run using the custom suite
```py
# Assign the flask app here
app = ...
# Add TestFoo to suite
suite = flask_unittest.LiveTestSuite(app)
suite.addTest(unittest.makeSuite(TestFoo))
# Run the suite
runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite)
```
The `LiveTestSuite` requires a built and configured `Flask` app object. It'll spawn this flask app using `app.run` as a daemon thread.
By default, the app runs on host 127.0.0.1 and port 5000. If you'd like to change this assign your custom host (as a `str`) and a port (as an `int`) to `app.config` under the key `HOST` and `PORT` respectively. (`app.config['HOST'] = '0.0.0.0'; app.config['PORT'] = 7000`)
The server is started when the suite is first run and it runs for the duration of the program
You will have access to the `app` passed to the suite inside `LiveTestCase`, using `self.app`. You will also have access to the url the server is running on inside the testcase, using `self.server_url`
**Full Example** (of `LiveTestCase`): [`flask_live_test.py`](./tests/flask_live_test.py)
**Full Example** (of `LiveTestSuite`): [`__init__.py`](./tests/__init__.py)
# About request context and flask globals
Both `ClientTestCase` and `AppClientTestCase` allow you to use flask gloabls, such as `request`, `g`, and `session`, directly in your test method (and your `setUp` and `tearDown` methods)
This is because the `client` is *instantiated using a `with` block*, and the test method, the `setUp` and `tearDown` methods **happen inside the `with` block**
Very rough psuedocode representation of this would look like-
```py
with app.test_client() as client:
self.setUp(client)
self.test_method(client)
self.tearDown(client)
```
This means you can treat everything in your test method, and `setUp` and `tearDown` methods, as if they are within a `with client:` block
Practically, this lets you use the flask globals after making a request using `client` - which is great for testing
Additional info in the [official docs](https://flask.palletsprojects.com/en/1.1.x/testing/#keeping-the-context-around)
# Emulating official flask testing example using `flask-unittest`
The official flask testing example can be found [in the flask repo](https://github.com/pallets/flask/tree/master/examples/tutorial/tests)
The original tests are written using `pytest`. This example demonstrates how `flask-unittest` can provide the same functionality for you, with the same degree of control!
Note that this demonstration does not implement the `test_cli_runner` - since that is not directly supported by `flask-unittest` (yet). However, it's completely possible to simply use `.test_cli_runner()` on the `app` object in the testcases provided by `flask-unittest` to emulate this.
The primary thing to demonstrate here, is to emulate the pytest fixtures defined in the original [`conftest.py`](https://github.com/pallets/flask/blob/master/examples/tutorial/tests/conftest.py)-
```py
@pytest.fixture
def app():
"""Create and configure a new app instance for each test."""
# create a temporary file to isolate the database for each test
db_fd, db_path = tempfile.mkstemp()
# create the app with common test config
app = create_app({"TESTING": True, "DATABASE": db_path})
# create the database and load test data
with app.app_context():
init_db()
get_db().executescript(_data_sql)
yield app
# close and remove the temporary database
os.close(db_fd)
os.unlink(db_path)
@pytest.fixture
def client(app):
"""A test client for the app."""
return app.test_client()
```
As you can see, this creates the app **and** the test client *per test*. So we'll be using `AppClientTestCase` for this.
Let's make a base class that provides functionality for this - all the other testcases can inherit from it. Defined in [`conftest.py`](./example/tests/conftest.py)
```py
import flask_unittest
class TestBase(flask_unittest.AppClientTestCase):
def create_app(self):
"""Create and configure a new app instance for each test."""
# create a temporary file to isolate the database for each test
db_fd, db_path = tempfile.mkstemp()
# create the app with common test config
app = create_app({"TESTING": True, "DATABASE": db_path})
# create the database and load test data
with app.app_context():
init_db()
get_db().executescript(_data_sql)
# Yield the app
'''
This can be outside the `with` block too, but we need to
call `close_db` before exiting current context
Otherwise windows will have trouble removing the temp file
that doesn't happen on unices though, which is nice
'''
yield app
## Close the db
close_db()
## Cleanup temp file
os.close(db_fd)
os.remove(db_path)
```
This is very similar to the original pytest fixtures and achieves the exact same functionality in the actual testcases too!
Do note however, there's an extra call inside `with app.app_context()` - `close_db`. Windows struggles to remove the temp database using `os.remove` if it hasn't been closed already - so we have to do that (this is true for the original pytest methods too).
Also of note, creation of the `AuthActions` object should be handled manually in each of the test case. This is just how `unittest` works in contrast to `pytest`. This shouldn't pose any issue whatsoever though.
Now let's look at an actual testcase. We'll be looking at `test_auth.py`, since it demonstrates the use of `app`, `client` and the flask globals very nicely.
For context, the original file is defined at [`test_auth.py`](https://github.com/pallets/flask/blob/master/examples/tutorial/tests/test_auth.py)
The full emulation of this file is at [`test_auth.py`](./example/tests/test_auth.py)
Ok! Let's look at the emulation of `test_register`.
For context, this is the original function-
```py
def test_register(client, app):
# test that viewing the page renders without template errors
assert client.get("/auth/register").status_code == 200
# test that successful registration redirects to the login page
response = client.post("/auth/register", data={"username": "a", "password": "a"})
assert "http://localhost/auth/login" == response.headers["Location"]
# test that the user was inserted into the database
with app.app_context():
assert (
get_db().execute("select * from user where username = 'a'").fetchone()
is not None
)
```
And here's the `flask-unittest` version!
```py
from example.tests.conftest import AuthActions, TestBase
class TestAuth(TestBase):
def test_register(self, app, client):
# test that viewing the page renders without template errors
self.assertStatus(client.get("/auth/register"), 200)
# test that successful registration redirects to the login page
response = client.post("/auth/register", data={"username": "a", "password": "a"})
self.assertLocationHeader(response, "http://localhost/auth/login")
# test that the user was inserted into the database
with app.app_context():
self.assertIsNotNone(
get_db().execute("select * from user where username = 'a'").fetchone()
)
```
See how similar it is? The only difference is that the function should be a method in a class that is extending `flask_unittest.AppClientTestCase` with `create_app` defined. In our case, that's `TestBase` from `conftest.py` - so we extend from that.
As mentioned previously, each test method of an `AppClientTestCase` should have the parameters `self, app, client` - not necessarily with the same names but the second param **will be** the `Flask` object, and the third param **will be** the `FlaskClient` object
Also, this is using `self.assert...` functions as per `unittest` convention. However, regular `assert`s should work just fine.
Nice! Let's look at a function that uses flask globals - `test_login`
Here's the original snippet-
```py
def test_login(client, auth):
# test that viewing the page renders without template errors
assert client.get("/auth/login").status_code == 200
# test that successful login redirects to the index page
response = auth.login()
assert response.headers["Location"] == "http://localhost/"
# login request set the user_id in the session
# check that the user is loaded from the session
with client:
client.get("/")
assert session["user_id"] == 1
assert g.user["username"] == "test"
```
And here's the `flask-unittest` version-
```py
class TestAuth(TestBase):
def test_login(self, _, client):
# test that viewing the page renders without template errors
self.assertStatus(client.get("/auth/login"), 200)
# test that successful login redirects to the index page
auth = AuthActions(client)
response = auth.login()
self.assertLocationHeader(response, "http://localhost/")
# login request set the user_id in the session
# check that the user is loaded from the session
client.get("/")
self.assertEqual(session["user_id"], 1)
self.assertEqual(g.user["username"], "test")
```
(this is a continuation of the previous example for `test_register`)
Once again, very similar. But there's a couple of things to note here.
Firstly, notice we are ignoring the second argument of `test_login`, since we have no reason to use `app` here. We do, however, need to use the `FlaskClient` object
Also notice, we don't have to do `with client` to access the request context. `flask-unittest` already handles this for us, so we have direct access to `session` and `g`.
Let's check out a case where we only use the `Flask` object and not the `FlaskClient` object - in which case, we can use `AppTestCase`.
The original function, `test_get_close_db`, is defined at [`test_db.py`](https://github.com/pallets/flask/blob/master/examples/tutorial/tests/test_db.py)
```py
def test_get_close_db(app):
with app.app_context():
db = get_db()
assert db is get_db()
with pytest.raises(sqlite3.ProgrammingError) as e:
db.execute("SELECT 1")
assert "closed" in str(e.value)
```
The `flask-unittest` version can be seen at [`test_db.py`](./example/tests/test_db.py)
```py
import flask_unittest
class TestDB(flask_unittest.AppTestCase):
# create_app omitted for brevity - remember to include it!
def test_get_close_db(self, app):
with app.app_context():
db = get_db()
assert db is get_db()
try:
db.execute("SELECT 1")
except sqlite3.ProgrammingError as e:
self.assertIn("closed", str(e.args[0]))
```
Very similar once again!
%package -n python3-flask-unittest
Summary: Unit testing flask applications made easy!
Provides: python-flask-unittest
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-flask-unittest
# flask-unittest
A hassle free solution to testing flask application using `unittest`
Provides functionality for testing using the `Flask` object, the `FlaskClient` object, a combination of the two, or even a live flask server!
This library is intended to provide utilities that help the user follow the [official flask application testing guidelines](https://flask.palletsprojects.com/en/1.1.x/testing/). It is recommended you familiarize yourself with that page.
Unless you're interested in testing a live flask server using a headless browser. In which case, familiarity with your preferred headless browser is enough.
# Features
* Test flask applications using a `Flask` object
* Access to `app_context`, `test_request_context` etc
* Access to flask globals like `g`, `request`, and `session`
* Access to `test_client` through the `Flask` object
* Same `Flask` object will be usable in the test method and its corresponding `setUp` and `tearDown` methods
* App is created per test method in the testcase
* Test flask applications using a `FlaskClient` object
* Access to flask globals like `g`, `request`, and `session`
* Test your flask app in an **API centric way** using the functionality provided by `FlaskClient`
* Same `FlaskClient` object will be usable in the test method and its corresponding `setUp` and `tearDown` methods
* The `FlaskClient` is created per test method of the testcase by using the given `Flask` object (App)
* App can either be a constant class property throughout the testcase, or be created per test method
* Test flask applications running *live* on localhost - using your preferred **headless browser** (e.g `selenium`, `pyppeteer` etc)
* Contrary to the previous ones, this functionality is handled by a test suite, rather than a test case
* The flask server is started in a daemon thread when the `LiveTestSuite` runs - it runs for the duration of the program
* Simple access to the context so you can access flask globals (`g`, `request`, and `session`) with minimal headaches and no gotchas!
* Support for using generators as `create_app` - essentially emulating `pytest`'s fixtures (more of that in `example/tests/`)
* No extra dependencies! (well, except for `flask`...) - easily integratable with the built in `unittest` module
# Quick Start
Install `flask-unittest` from pypi using `pip`
```bash
pip install flask-unittest
```
Import in your module and start testing!
```py
import flask_unittest
```
Now, before moving on to the examples below - I **highly recommend** checking out the official [Testing Flask Applications example](https://flask.palletsprojects.com/en/1.1.x/testing/). It's *extremely simple* and should take only 5 minutes to digest.
Alternatively, you can directly dive into the examples at [`tests/`](./tests/) and [`example/tests/`](./example/tests). Though this might be a bit intimidating if you're just starting out at testing flask apps.
**NOTE**: For all the following testcases using `FlaskClient`, it is recommended to set `.testing` on your `Flask` app to `True` (i.e `app.testing = True`)
# Test using `FlaskClient`
If you want to use a [`FlaskClient`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.test_client) object to test - this is the testcase for you!
This testcase creates a `FlaskClient` object for each test method. But the `app` property is kept constant.
```py
import flask_unittest
import flask.globals
class TestFoo(flask_unittest.ClientTestCase):
# Assign the `Flask` app object
app = ...
def setUp(self, client):
# Perform set up before each test, using client
pass
def tearDown(self, client):
# Perform tear down after each test, using client
pass
'''
Note: the setUp and tearDown method don't need to be explicitly declared
if they don't do anything (like in here) - this is just an example
Only declare the setUp and tearDown methods with a body, same as regular unittest testcases
'''
def test_foo_with_client(self, client):
# Use the client here
# Example request to a route returning "hello world" (on a hypothetical app)
rv = client.get('/hello')
self.assertInResponse(rv, 'hello world!')
def test_bar_with_client(self, client):
# Use the client here
# Example login request (on a hypothetical app)
rv = client.post('/login', {'username': 'pinkerton', 'password': 'secret_key'})
# Make sure rv is a redirect request to index page
self.assertLocationHeader('http://localhost/')
# Make sure session is set
self.assertIn('user_id', flask.globals.session)
```
Remember to assign a correctly configured `Flask` app object to `app`!
Each test method, as well as the `setUp` and `tearDown` methods, should take `client` as a parameter. You can name this parameter whatever you want of course but the 2nd parameter (including `self` as first) is a `FlaskClient` object.
Note that the `client` is different for *each test method*. But it's the same for a singular test method and its corresponding `setUp` and `tearDown` methods.
What does this mean? Well, when it's time to run `test_foo_with_client`, a `FlaskClient` object is created using `app.test_client()`. Then this is passed to `setUp`, which does its job of setup. After that, the same `client` is passed to `test_foo_with_client`, which does the testing. Finally, the same `client` again, is passed to `tearDown` - which cleans the stuff up.
Now when it's time to run `test_bar_with_client`, a new `FlaskClient` object is created and so on.
This essentially means that any global changes (such as `session` and cookies) you perform in `setUp` using `client`, will be persistent in the actual test method. And the changes in the test method will be persistent in the `tearDown`. These changes get destroyed in the next test method, where a new `FlaskClient` object is created.
**NOTE**: If you want to **disable** the use of cookies on `client`, you need to put `test_client_use_cookies = False` in your testcase body.
You can also pass in extra kwargs to the `test_client()` call by setting `test_client_kwargs` in your testcase body.
**Full Example**: [`flask_client_test.py`](./tests/flask_client_test.py)
# Test using `Flask`
If you want to use a [`Flask`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask) object to test - this is the testcase for you!
This testcase creates a `Flask` object for each test method, using the `create_app` method implemented by the user
```py
import flask_unittest
from flaskr.db import get_db
class TestFoo(flask_unittest.AppTestCase):
def create_app(self):
# Return/Yield a `Flask` object here
pass
def setUp(self, app):
# Perform set up before each test, using app
pass
def tearDown(self, app):
# Perform tear down after each test, using app
pass
'''
Note: the setUp and tearDown method don't need to be explicitly declared
if they don't do anything (like in here) - this is just an example
Only declare the setUp and tearDown methods with a body, same as regular unittest testcases
'''
def test_foo_with_app(self, app):
# Use the app here
# Example of using test_request_context (on a hypothetical app)
with app.test_request_context('/1/update'):
self.assertEqual(request.endpoint, 'blog.update')
def test_bar_with_app(self, app):
# Use the app here
# Example of using client from app (on a hypothetical app)
with app.test_client() as client:
rv = client.get('/hello')
self.assertInResponse(rv, 'hello world!')
def test_baz_with_app(self, app):
# Use the app here
# Example of using app_context (on a hypothetical app)
with app.app_context():
get_db().execute("INSERT INTO user (username, password) VALUES ('test', 'testpass');")
```
The `create_app` function should return a correctly configured `Flask` object representing the webapp to test
You can also do any set up, extra config for the app (db init etc) here
It's also possible (and encouraged) to `yield` a `Flask` object here instead of `return`ing one (essentially making this a generator function)
This way, you can put cleanup right here after the `yield` and they will be executed once the test method has run
See [Emulating official flask testing example using `flask-unittest`](#emulating-official-flask-testing-example-using-flask-unittest)
Each test method, as well as the `setUp` and `tearDown` methods, should take `app` as a parameter. You can name this parameter whatever you want of course but the 2nd parameter (including `self` as first) is a `Flask` object returned/yielded from the user provided `create_app`.
Note that the `app` is different for *each test method*. But it's the same for a singular test method and its corresponding `setUp` and `tearDown` methods.
What does this mean? Well, when it's time to run `test_foo_with_app`, a `Flask` object is created using `create_app`. Then this is passed to `setUp`, which does its job of setup. After that, the same `app` is passed to `test_foo_with_app`, which does the testing. Finally, the same `app` again, is passed to `tearDown` - which cleans the stuff up.
Now when it's time to run `test_bar_with_app` - `create_app` is called again and a new `Flask` object is created and so on.
If `create_app` is a generator function. All the stuff after `yield app` will be executed after the test method (and its `tearDown`, if any) has run
**Full Example**: [`flask_app_test.py`](./tests/flask_app_test.py)
# Test using both `Flask` and `FlaskClient`
If you want to use both [`Flask`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask) *and* [`FlaskClient`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.test_client) to test - this is the testcase for you!
This testcase creates a `Flask` object, using the `create_app` method implemented by the user, *and* a `FlaskClient` object from said `Flask` object, for each test method
```py
import flask_unittest
from flaskr import get_db
class TestFoo(flask_unittest.AppClientTestCase):
def create_app(self):
# Return/Yield a `Flask` object here
pass
def setUp(self, app, client):
# Perform set up before each test, using app and client
pass
def tearDown(self, app, client):
# Perform tear down after each test, using app and client
pass
'''
Note: the setUp and tearDown method don't need to be explicitly declared
if they don't do anything (like in here) - this is just an example
Only declare the setUp and tearDown methods with a body, same as regular unittest testcases
'''
def test_foo_with_both(self, app, client):
# Use the app and client here
# Example of registering a user and checking if the entry exists in db (on a hypothetical app)
response = client.post('/auth/register', data={'username': 'a', 'password': 'a'})
self.assertLocationHeader(response, 'http://localhost/auth/login')
# test that the user was inserted into the database
with app.app_context():
self.assertIsNotNone(get_db().execute("select * from user where username = 'a'").fetchone())
def test_bar_with_both(self, app, client):
# Use the app and client here
# Example of creating a post and checking if the entry exists in db (on a hypothetical app)
client.post('/create', data={'title': 'created', 'body': ''})
with app.app_context():
db = get_db()
count = db.execute('SELECT COUNT(id) FROM post').fetchone()[0]
self.assertEqual(count, 2)
```
The `create_app` function should return a correctly configured `Flask` object representing the webapp to test
You can also do any set up, extra config for the app (db init etc) here
It's also possible (and encouraged) to `yield` a `Flask` object here instead of `return`ing one (essentially making this a generator function)
This way, you can put cleanup right here after the `yield` and they will be executed once the test method has run
See [Emulating official flask testing example using `flask-unittest`](#emulating-official-flask-testing-example-using-flask-unittest)
Each test method, as well as the `setUp` and `tearDown` methods, should take `app` and `client` as a parameter. You can name these parameters whatever you want of course but the 2nd parameter (including `self` as first) is a `Flask` object returned/yielded from the user provided `create_app`, and the third parameter is a `FlaskClient` object returned from calling `.test_client` on said `Flask` object.
Note that the `app` and `client` are different for *each test method*. But they are the same for a singular test method and its corresponding `setUp` and `tearDown` methods.
What does this mean? Well, when it's time to run `test_foo_with_both`, a `Flask` object is created using `create_app()`, and a `FlaskClient` object is created from it. Then they are passed to `setUp`, which does its job of setup. After that, the same `app` and `client` are passed to `test_foo_with_both`, which does the testing. Finally, the same `app` and `client` again, are passed to `tearDown` - which cleans the stuff up.
Now when it's time to run `test_bar_with_app` - `create_app` is called again to create a new `Flask` object, and also `.test_client` to create a new `FlaskClient` object and so on.
If `create_app` is a generator function. All the stuff after `yield app` will be executed after the test method (and its `tearDown` if any) has run
**Full Example**: [`flask_appclient_test.py`](./tests/flask_appclient_test.py)
# Test using a headless browser (eg `selenium`, `pyppeteer` etc)
If you want to test a live flask server using a headless browser - `LiveTestSuite` is for you!
Unlike the previous ones, this functionality relies on the use of a **suite**, *not a testcase*. The testcases should inherit from `LiveTestCase` but the real juice is in `LiveTestSuite`.
An example testcase for this would look like-
```py
import flask_unittest
from selenium.webdriver import Chrome, ChromeOptions
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
class TestFoo(flask_unittest.LiveTestCase):
driver: Union[Chrome, None] = None
std_wait: Union[WebDriverWait, None] = None
### setUpClass and tearDownClass for the entire class
# Not quite mandatory, but this is the best place to set up and tear down selenium
@classmethod
def setUpClass(cls):
# Initiate the selenium webdriver
options = ChromeOptions()
options.add_argument('--headless')
cls.driver = Chrome(options=options)
cls.std_wait = WebDriverWait(cls.driver, 5)
@classmethod
def tearDownClass(cls):
# Quit the webdriver
cls.driver.quit()
### Actual test methods
def test_foo_with_driver(self):
# Use self.driver here
# You also have access to self.server_url and self.app
# Example of using selenium to go to index page and try to find some elements (on a hypothetical app)
self.driver.get(self.server_url)
self.std_wait.until(EC.presence_of_element_located((By.LINK_TEXT, 'Register')))
self.std_wait.until(EC.presence_of_element_located((By.LINK_TEXT, 'Log In')))
```
This is pretty straight forward, it's just a regular test case that you would use if you spawned the flask server from the terminal before running tests
Now, you need to use the `LiveTestSuite` to run this. The previous testcases could be run using `unitttest.TestSuite`, or simply `unittest.main` but this *has to be* run using the custom suite
```py
# Assign the flask app here
app = ...
# Add TestFoo to suite
suite = flask_unittest.LiveTestSuite(app)
suite.addTest(unittest.makeSuite(TestFoo))
# Run the suite
runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite)
```
The `LiveTestSuite` requires a built and configured `Flask` app object. It'll spawn this flask app using `app.run` as a daemon thread.
By default, the app runs on host 127.0.0.1 and port 5000. If you'd like to change this assign your custom host (as a `str`) and a port (as an `int`) to `app.config` under the key `HOST` and `PORT` respectively. (`app.config['HOST'] = '0.0.0.0'; app.config['PORT'] = 7000`)
The server is started when the suite is first run and it runs for the duration of the program
You will have access to the `app` passed to the suite inside `LiveTestCase`, using `self.app`. You will also have access to the url the server is running on inside the testcase, using `self.server_url`
**Full Example** (of `LiveTestCase`): [`flask_live_test.py`](./tests/flask_live_test.py)
**Full Example** (of `LiveTestSuite`): [`__init__.py`](./tests/__init__.py)
# About request context and flask globals
Both `ClientTestCase` and `AppClientTestCase` allow you to use flask gloabls, such as `request`, `g`, and `session`, directly in your test method (and your `setUp` and `tearDown` methods)
This is because the `client` is *instantiated using a `with` block*, and the test method, the `setUp` and `tearDown` methods **happen inside the `with` block**
Very rough psuedocode representation of this would look like-
```py
with app.test_client() as client:
self.setUp(client)
self.test_method(client)
self.tearDown(client)
```
This means you can treat everything in your test method, and `setUp` and `tearDown` methods, as if they are within a `with client:` block
Practically, this lets you use the flask globals after making a request using `client` - which is great for testing
Additional info in the [official docs](https://flask.palletsprojects.com/en/1.1.x/testing/#keeping-the-context-around)
# Emulating official flask testing example using `flask-unittest`
The official flask testing example can be found [in the flask repo](https://github.com/pallets/flask/tree/master/examples/tutorial/tests)
The original tests are written using `pytest`. This example demonstrates how `flask-unittest` can provide the same functionality for you, with the same degree of control!
Note that this demonstration does not implement the `test_cli_runner` - since that is not directly supported by `flask-unittest` (yet). However, it's completely possible to simply use `.test_cli_runner()` on the `app` object in the testcases provided by `flask-unittest` to emulate this.
The primary thing to demonstrate here, is to emulate the pytest fixtures defined in the original [`conftest.py`](https://github.com/pallets/flask/blob/master/examples/tutorial/tests/conftest.py)-
```py
@pytest.fixture
def app():
"""Create and configure a new app instance for each test."""
# create a temporary file to isolate the database for each test
db_fd, db_path = tempfile.mkstemp()
# create the app with common test config
app = create_app({"TESTING": True, "DATABASE": db_path})
# create the database and load test data
with app.app_context():
init_db()
get_db().executescript(_data_sql)
yield app
# close and remove the temporary database
os.close(db_fd)
os.unlink(db_path)
@pytest.fixture
def client(app):
"""A test client for the app."""
return app.test_client()
```
As you can see, this creates the app **and** the test client *per test*. So we'll be using `AppClientTestCase` for this.
Let's make a base class that provides functionality for this - all the other testcases can inherit from it. Defined in [`conftest.py`](./example/tests/conftest.py)
```py
import flask_unittest
class TestBase(flask_unittest.AppClientTestCase):
def create_app(self):
"""Create and configure a new app instance for each test."""
# create a temporary file to isolate the database for each test
db_fd, db_path = tempfile.mkstemp()
# create the app with common test config
app = create_app({"TESTING": True, "DATABASE": db_path})
# create the database and load test data
with app.app_context():
init_db()
get_db().executescript(_data_sql)
# Yield the app
'''
This can be outside the `with` block too, but we need to
call `close_db` before exiting current context
Otherwise windows will have trouble removing the temp file
that doesn't happen on unices though, which is nice
'''
yield app
## Close the db
close_db()
## Cleanup temp file
os.close(db_fd)
os.remove(db_path)
```
This is very similar to the original pytest fixtures and achieves the exact same functionality in the actual testcases too!
Do note however, there's an extra call inside `with app.app_context()` - `close_db`. Windows struggles to remove the temp database using `os.remove` if it hasn't been closed already - so we have to do that (this is true for the original pytest methods too).
Also of note, creation of the `AuthActions` object should be handled manually in each of the test case. This is just how `unittest` works in contrast to `pytest`. This shouldn't pose any issue whatsoever though.
Now let's look at an actual testcase. We'll be looking at `test_auth.py`, since it demonstrates the use of `app`, `client` and the flask globals very nicely.
For context, the original file is defined at [`test_auth.py`](https://github.com/pallets/flask/blob/master/examples/tutorial/tests/test_auth.py)
The full emulation of this file is at [`test_auth.py`](./example/tests/test_auth.py)
Ok! Let's look at the emulation of `test_register`.
For context, this is the original function-
```py
def test_register(client, app):
# test that viewing the page renders without template errors
assert client.get("/auth/register").status_code == 200
# test that successful registration redirects to the login page
response = client.post("/auth/register", data={"username": "a", "password": "a"})
assert "http://localhost/auth/login" == response.headers["Location"]
# test that the user was inserted into the database
with app.app_context():
assert (
get_db().execute("select * from user where username = 'a'").fetchone()
is not None
)
```
And here's the `flask-unittest` version!
```py
from example.tests.conftest import AuthActions, TestBase
class TestAuth(TestBase):
def test_register(self, app, client):
# test that viewing the page renders without template errors
self.assertStatus(client.get("/auth/register"), 200)
# test that successful registration redirects to the login page
response = client.post("/auth/register", data={"username": "a", "password": "a"})
self.assertLocationHeader(response, "http://localhost/auth/login")
# test that the user was inserted into the database
with app.app_context():
self.assertIsNotNone(
get_db().execute("select * from user where username = 'a'").fetchone()
)
```
See how similar it is? The only difference is that the function should be a method in a class that is extending `flask_unittest.AppClientTestCase` with `create_app` defined. In our case, that's `TestBase` from `conftest.py` - so we extend from that.
As mentioned previously, each test method of an `AppClientTestCase` should have the parameters `self, app, client` - not necessarily with the same names but the second param **will be** the `Flask` object, and the third param **will be** the `FlaskClient` object
Also, this is using `self.assert...` functions as per `unittest` convention. However, regular `assert`s should work just fine.
Nice! Let's look at a function that uses flask globals - `test_login`
Here's the original snippet-
```py
def test_login(client, auth):
# test that viewing the page renders without template errors
assert client.get("/auth/login").status_code == 200
# test that successful login redirects to the index page
response = auth.login()
assert response.headers["Location"] == "http://localhost/"
# login request set the user_id in the session
# check that the user is loaded from the session
with client:
client.get("/")
assert session["user_id"] == 1
assert g.user["username"] == "test"
```
And here's the `flask-unittest` version-
```py
class TestAuth(TestBase):
def test_login(self, _, client):
# test that viewing the page renders without template errors
self.assertStatus(client.get("/auth/login"), 200)
# test that successful login redirects to the index page
auth = AuthActions(client)
response = auth.login()
self.assertLocationHeader(response, "http://localhost/")
# login request set the user_id in the session
# check that the user is loaded from the session
client.get("/")
self.assertEqual(session["user_id"], 1)
self.assertEqual(g.user["username"], "test")
```
(this is a continuation of the previous example for `test_register`)
Once again, very similar. But there's a couple of things to note here.
Firstly, notice we are ignoring the second argument of `test_login`, since we have no reason to use `app` here. We do, however, need to use the `FlaskClient` object
Also notice, we don't have to do `with client` to access the request context. `flask-unittest` already handles this for us, so we have direct access to `session` and `g`.
Let's check out a case where we only use the `Flask` object and not the `FlaskClient` object - in which case, we can use `AppTestCase`.
The original function, `test_get_close_db`, is defined at [`test_db.py`](https://github.com/pallets/flask/blob/master/examples/tutorial/tests/test_db.py)
```py
def test_get_close_db(app):
with app.app_context():
db = get_db()
assert db is get_db()
with pytest.raises(sqlite3.ProgrammingError) as e:
db.execute("SELECT 1")
assert "closed" in str(e.value)
```
The `flask-unittest` version can be seen at [`test_db.py`](./example/tests/test_db.py)
```py
import flask_unittest
class TestDB(flask_unittest.AppTestCase):
# create_app omitted for brevity - remember to include it!
def test_get_close_db(self, app):
with app.app_context():
db = get_db()
assert db is get_db()
try:
db.execute("SELECT 1")
except sqlite3.ProgrammingError as e:
self.assertIn("closed", str(e.args[0]))
```
Very similar once again!
%package help
Summary: Development documents and examples for flask-unittest
Provides: python3-flask-unittest-doc
%description help
# flask-unittest
A hassle free solution to testing flask application using `unittest`
Provides functionality for testing using the `Flask` object, the `FlaskClient` object, a combination of the two, or even a live flask server!
This library is intended to provide utilities that help the user follow the [official flask application testing guidelines](https://flask.palletsprojects.com/en/1.1.x/testing/). It is recommended you familiarize yourself with that page.
Unless you're interested in testing a live flask server using a headless browser. In which case, familiarity with your preferred headless browser is enough.
# Features
* Test flask applications using a `Flask` object
* Access to `app_context`, `test_request_context` etc
* Access to flask globals like `g`, `request`, and `session`
* Access to `test_client` through the `Flask` object
* Same `Flask` object will be usable in the test method and its corresponding `setUp` and `tearDown` methods
* App is created per test method in the testcase
* Test flask applications using a `FlaskClient` object
* Access to flask globals like `g`, `request`, and `session`
* Test your flask app in an **API centric way** using the functionality provided by `FlaskClient`
* Same `FlaskClient` object will be usable in the test method and its corresponding `setUp` and `tearDown` methods
* The `FlaskClient` is created per test method of the testcase by using the given `Flask` object (App)
* App can either be a constant class property throughout the testcase, or be created per test method
* Test flask applications running *live* on localhost - using your preferred **headless browser** (e.g `selenium`, `pyppeteer` etc)
* Contrary to the previous ones, this functionality is handled by a test suite, rather than a test case
* The flask server is started in a daemon thread when the `LiveTestSuite` runs - it runs for the duration of the program
* Simple access to the context so you can access flask globals (`g`, `request`, and `session`) with minimal headaches and no gotchas!
* Support for using generators as `create_app` - essentially emulating `pytest`'s fixtures (more of that in `example/tests/`)
* No extra dependencies! (well, except for `flask`...) - easily integratable with the built in `unittest` module
# Quick Start
Install `flask-unittest` from pypi using `pip`
```bash
pip install flask-unittest
```
Import in your module and start testing!
```py
import flask_unittest
```
Now, before moving on to the examples below - I **highly recommend** checking out the official [Testing Flask Applications example](https://flask.palletsprojects.com/en/1.1.x/testing/). It's *extremely simple* and should take only 5 minutes to digest.
Alternatively, you can directly dive into the examples at [`tests/`](./tests/) and [`example/tests/`](./example/tests). Though this might be a bit intimidating if you're just starting out at testing flask apps.
**NOTE**: For all the following testcases using `FlaskClient`, it is recommended to set `.testing` on your `Flask` app to `True` (i.e `app.testing = True`)
# Test using `FlaskClient`
If you want to use a [`FlaskClient`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.test_client) object to test - this is the testcase for you!
This testcase creates a `FlaskClient` object for each test method. But the `app` property is kept constant.
```py
import flask_unittest
import flask.globals
class TestFoo(flask_unittest.ClientTestCase):
# Assign the `Flask` app object
app = ...
def setUp(self, client):
# Perform set up before each test, using client
pass
def tearDown(self, client):
# Perform tear down after each test, using client
pass
'''
Note: the setUp and tearDown method don't need to be explicitly declared
if they don't do anything (like in here) - this is just an example
Only declare the setUp and tearDown methods with a body, same as regular unittest testcases
'''
def test_foo_with_client(self, client):
# Use the client here
# Example request to a route returning "hello world" (on a hypothetical app)
rv = client.get('/hello')
self.assertInResponse(rv, 'hello world!')
def test_bar_with_client(self, client):
# Use the client here
# Example login request (on a hypothetical app)
rv = client.post('/login', {'username': 'pinkerton', 'password': 'secret_key'})
# Make sure rv is a redirect request to index page
self.assertLocationHeader('http://localhost/')
# Make sure session is set
self.assertIn('user_id', flask.globals.session)
```
Remember to assign a correctly configured `Flask` app object to `app`!
Each test method, as well as the `setUp` and `tearDown` methods, should take `client` as a parameter. You can name this parameter whatever you want of course but the 2nd parameter (including `self` as first) is a `FlaskClient` object.
Note that the `client` is different for *each test method*. But it's the same for a singular test method and its corresponding `setUp` and `tearDown` methods.
What does this mean? Well, when it's time to run `test_foo_with_client`, a `FlaskClient` object is created using `app.test_client()`. Then this is passed to `setUp`, which does its job of setup. After that, the same `client` is passed to `test_foo_with_client`, which does the testing. Finally, the same `client` again, is passed to `tearDown` - which cleans the stuff up.
Now when it's time to run `test_bar_with_client`, a new `FlaskClient` object is created and so on.
This essentially means that any global changes (such as `session` and cookies) you perform in `setUp` using `client`, will be persistent in the actual test method. And the changes in the test method will be persistent in the `tearDown`. These changes get destroyed in the next test method, where a new `FlaskClient` object is created.
**NOTE**: If you want to **disable** the use of cookies on `client`, you need to put `test_client_use_cookies = False` in your testcase body.
You can also pass in extra kwargs to the `test_client()` call by setting `test_client_kwargs` in your testcase body.
**Full Example**: [`flask_client_test.py`](./tests/flask_client_test.py)
# Test using `Flask`
If you want to use a [`Flask`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask) object to test - this is the testcase for you!
This testcase creates a `Flask` object for each test method, using the `create_app` method implemented by the user
```py
import flask_unittest
from flaskr.db import get_db
class TestFoo(flask_unittest.AppTestCase):
def create_app(self):
# Return/Yield a `Flask` object here
pass
def setUp(self, app):
# Perform set up before each test, using app
pass
def tearDown(self, app):
# Perform tear down after each test, using app
pass
'''
Note: the setUp and tearDown method don't need to be explicitly declared
if they don't do anything (like in here) - this is just an example
Only declare the setUp and tearDown methods with a body, same as regular unittest testcases
'''
def test_foo_with_app(self, app):
# Use the app here
# Example of using test_request_context (on a hypothetical app)
with app.test_request_context('/1/update'):
self.assertEqual(request.endpoint, 'blog.update')
def test_bar_with_app(self, app):
# Use the app here
# Example of using client from app (on a hypothetical app)
with app.test_client() as client:
rv = client.get('/hello')
self.assertInResponse(rv, 'hello world!')
def test_baz_with_app(self, app):
# Use the app here
# Example of using app_context (on a hypothetical app)
with app.app_context():
get_db().execute("INSERT INTO user (username, password) VALUES ('test', 'testpass');")
```
The `create_app` function should return a correctly configured `Flask` object representing the webapp to test
You can also do any set up, extra config for the app (db init etc) here
It's also possible (and encouraged) to `yield` a `Flask` object here instead of `return`ing one (essentially making this a generator function)
This way, you can put cleanup right here after the `yield` and they will be executed once the test method has run
See [Emulating official flask testing example using `flask-unittest`](#emulating-official-flask-testing-example-using-flask-unittest)
Each test method, as well as the `setUp` and `tearDown` methods, should take `app` as a parameter. You can name this parameter whatever you want of course but the 2nd parameter (including `self` as first) is a `Flask` object returned/yielded from the user provided `create_app`.
Note that the `app` is different for *each test method*. But it's the same for a singular test method and its corresponding `setUp` and `tearDown` methods.
What does this mean? Well, when it's time to run `test_foo_with_app`, a `Flask` object is created using `create_app`. Then this is passed to `setUp`, which does its job of setup. After that, the same `app` is passed to `test_foo_with_app`, which does the testing. Finally, the same `app` again, is passed to `tearDown` - which cleans the stuff up.
Now when it's time to run `test_bar_with_app` - `create_app` is called again and a new `Flask` object is created and so on.
If `create_app` is a generator function. All the stuff after `yield app` will be executed after the test method (and its `tearDown`, if any) has run
**Full Example**: [`flask_app_test.py`](./tests/flask_app_test.py)
# Test using both `Flask` and `FlaskClient`
If you want to use both [`Flask`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask) *and* [`FlaskClient`](https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.test_client) to test - this is the testcase for you!
This testcase creates a `Flask` object, using the `create_app` method implemented by the user, *and* a `FlaskClient` object from said `Flask` object, for each test method
```py
import flask_unittest
from flaskr import get_db
class TestFoo(flask_unittest.AppClientTestCase):
def create_app(self):
# Return/Yield a `Flask` object here
pass
def setUp(self, app, client):
# Perform set up before each test, using app and client
pass
def tearDown(self, app, client):
# Perform tear down after each test, using app and client
pass
'''
Note: the setUp and tearDown method don't need to be explicitly declared
if they don't do anything (like in here) - this is just an example
Only declare the setUp and tearDown methods with a body, same as regular unittest testcases
'''
def test_foo_with_both(self, app, client):
# Use the app and client here
# Example of registering a user and checking if the entry exists in db (on a hypothetical app)
response = client.post('/auth/register', data={'username': 'a', 'password': 'a'})
self.assertLocationHeader(response, 'http://localhost/auth/login')
# test that the user was inserted into the database
with app.app_context():
self.assertIsNotNone(get_db().execute("select * from user where username = 'a'").fetchone())
def test_bar_with_both(self, app, client):
# Use the app and client here
# Example of creating a post and checking if the entry exists in db (on a hypothetical app)
client.post('/create', data={'title': 'created', 'body': ''})
with app.app_context():
db = get_db()
count = db.execute('SELECT COUNT(id) FROM post').fetchone()[0]
self.assertEqual(count, 2)
```
The `create_app` function should return a correctly configured `Flask` object representing the webapp to test
You can also do any set up, extra config for the app (db init etc) here
It's also possible (and encouraged) to `yield` a `Flask` object here instead of `return`ing one (essentially making this a generator function)
This way, you can put cleanup right here after the `yield` and they will be executed once the test method has run
See [Emulating official flask testing example using `flask-unittest`](#emulating-official-flask-testing-example-using-flask-unittest)
Each test method, as well as the `setUp` and `tearDown` methods, should take `app` and `client` as a parameter. You can name these parameters whatever you want of course but the 2nd parameter (including `self` as first) is a `Flask` object returned/yielded from the user provided `create_app`, and the third parameter is a `FlaskClient` object returned from calling `.test_client` on said `Flask` object.
Note that the `app` and `client` are different for *each test method*. But they are the same for a singular test method and its corresponding `setUp` and `tearDown` methods.
What does this mean? Well, when it's time to run `test_foo_with_both`, a `Flask` object is created using `create_app()`, and a `FlaskClient` object is created from it. Then they are passed to `setUp`, which does its job of setup. After that, the same `app` and `client` are passed to `test_foo_with_both`, which does the testing. Finally, the same `app` and `client` again, are passed to `tearDown` - which cleans the stuff up.
Now when it's time to run `test_bar_with_app` - `create_app` is called again to create a new `Flask` object, and also `.test_client` to create a new `FlaskClient` object and so on.
If `create_app` is a generator function. All the stuff after `yield app` will be executed after the test method (and its `tearDown` if any) has run
**Full Example**: [`flask_appclient_test.py`](./tests/flask_appclient_test.py)
# Test using a headless browser (eg `selenium`, `pyppeteer` etc)
If you want to test a live flask server using a headless browser - `LiveTestSuite` is for you!
Unlike the previous ones, this functionality relies on the use of a **suite**, *not a testcase*. The testcases should inherit from `LiveTestCase` but the real juice is in `LiveTestSuite`.
An example testcase for this would look like-
```py
import flask_unittest
from selenium.webdriver import Chrome, ChromeOptions
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
class TestFoo(flask_unittest.LiveTestCase):
driver: Union[Chrome, None] = None
std_wait: Union[WebDriverWait, None] = None
### setUpClass and tearDownClass for the entire class
# Not quite mandatory, but this is the best place to set up and tear down selenium
@classmethod
def setUpClass(cls):
# Initiate the selenium webdriver
options = ChromeOptions()
options.add_argument('--headless')
cls.driver = Chrome(options=options)
cls.std_wait = WebDriverWait(cls.driver, 5)
@classmethod
def tearDownClass(cls):
# Quit the webdriver
cls.driver.quit()
### Actual test methods
def test_foo_with_driver(self):
# Use self.driver here
# You also have access to self.server_url and self.app
# Example of using selenium to go to index page and try to find some elements (on a hypothetical app)
self.driver.get(self.server_url)
self.std_wait.until(EC.presence_of_element_located((By.LINK_TEXT, 'Register')))
self.std_wait.until(EC.presence_of_element_located((By.LINK_TEXT, 'Log In')))
```
This is pretty straight forward, it's just a regular test case that you would use if you spawned the flask server from the terminal before running tests
Now, you need to use the `LiveTestSuite` to run this. The previous testcases could be run using `unitttest.TestSuite`, or simply `unittest.main` but this *has to be* run using the custom suite
```py
# Assign the flask app here
app = ...
# Add TestFoo to suite
suite = flask_unittest.LiveTestSuite(app)
suite.addTest(unittest.makeSuite(TestFoo))
# Run the suite
runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite)
```
The `LiveTestSuite` requires a built and configured `Flask` app object. It'll spawn this flask app using `app.run` as a daemon thread.
By default, the app runs on host 127.0.0.1 and port 5000. If you'd like to change this assign your custom host (as a `str`) and a port (as an `int`) to `app.config` under the key `HOST` and `PORT` respectively. (`app.config['HOST'] = '0.0.0.0'; app.config['PORT'] = 7000`)
The server is started when the suite is first run and it runs for the duration of the program
You will have access to the `app` passed to the suite inside `LiveTestCase`, using `self.app`. You will also have access to the url the server is running on inside the testcase, using `self.server_url`
**Full Example** (of `LiveTestCase`): [`flask_live_test.py`](./tests/flask_live_test.py)
**Full Example** (of `LiveTestSuite`): [`__init__.py`](./tests/__init__.py)
# About request context and flask globals
Both `ClientTestCase` and `AppClientTestCase` allow you to use flask gloabls, such as `request`, `g`, and `session`, directly in your test method (and your `setUp` and `tearDown` methods)
This is because the `client` is *instantiated using a `with` block*, and the test method, the `setUp` and `tearDown` methods **happen inside the `with` block**
Very rough psuedocode representation of this would look like-
```py
with app.test_client() as client:
self.setUp(client)
self.test_method(client)
self.tearDown(client)
```
This means you can treat everything in your test method, and `setUp` and `tearDown` methods, as if they are within a `with client:` block
Practically, this lets you use the flask globals after making a request using `client` - which is great for testing
Additional info in the [official docs](https://flask.palletsprojects.com/en/1.1.x/testing/#keeping-the-context-around)
# Emulating official flask testing example using `flask-unittest`
The official flask testing example can be found [in the flask repo](https://github.com/pallets/flask/tree/master/examples/tutorial/tests)
The original tests are written using `pytest`. This example demonstrates how `flask-unittest` can provide the same functionality for you, with the same degree of control!
Note that this demonstration does not implement the `test_cli_runner` - since that is not directly supported by `flask-unittest` (yet). However, it's completely possible to simply use `.test_cli_runner()` on the `app` object in the testcases provided by `flask-unittest` to emulate this.
The primary thing to demonstrate here, is to emulate the pytest fixtures defined in the original [`conftest.py`](https://github.com/pallets/flask/blob/master/examples/tutorial/tests/conftest.py)-
```py
@pytest.fixture
def app():
"""Create and configure a new app instance for each test."""
# create a temporary file to isolate the database for each test
db_fd, db_path = tempfile.mkstemp()
# create the app with common test config
app = create_app({"TESTING": True, "DATABASE": db_path})
# create the database and load test data
with app.app_context():
init_db()
get_db().executescript(_data_sql)
yield app
# close and remove the temporary database
os.close(db_fd)
os.unlink(db_path)
@pytest.fixture
def client(app):
"""A test client for the app."""
return app.test_client()
```
As you can see, this creates the app **and** the test client *per test*. So we'll be using `AppClientTestCase` for this.
Let's make a base class that provides functionality for this - all the other testcases can inherit from it. Defined in [`conftest.py`](./example/tests/conftest.py)
```py
import flask_unittest
class TestBase(flask_unittest.AppClientTestCase):
def create_app(self):
"""Create and configure a new app instance for each test."""
# create a temporary file to isolate the database for each test
db_fd, db_path = tempfile.mkstemp()
# create the app with common test config
app = create_app({"TESTING": True, "DATABASE": db_path})
# create the database and load test data
with app.app_context():
init_db()
get_db().executescript(_data_sql)
# Yield the app
'''
This can be outside the `with` block too, but we need to
call `close_db` before exiting current context
Otherwise windows will have trouble removing the temp file
that doesn't happen on unices though, which is nice
'''
yield app
## Close the db
close_db()
## Cleanup temp file
os.close(db_fd)
os.remove(db_path)
```
This is very similar to the original pytest fixtures and achieves the exact same functionality in the actual testcases too!
Do note however, there's an extra call inside `with app.app_context()` - `close_db`. Windows struggles to remove the temp database using `os.remove` if it hasn't been closed already - so we have to do that (this is true for the original pytest methods too).
Also of note, creation of the `AuthActions` object should be handled manually in each of the test case. This is just how `unittest` works in contrast to `pytest`. This shouldn't pose any issue whatsoever though.
Now let's look at an actual testcase. We'll be looking at `test_auth.py`, since it demonstrates the use of `app`, `client` and the flask globals very nicely.
For context, the original file is defined at [`test_auth.py`](https://github.com/pallets/flask/blob/master/examples/tutorial/tests/test_auth.py)
The full emulation of this file is at [`test_auth.py`](./example/tests/test_auth.py)
Ok! Let's look at the emulation of `test_register`.
For context, this is the original function-
```py
def test_register(client, app):
# test that viewing the page renders without template errors
assert client.get("/auth/register").status_code == 200
# test that successful registration redirects to the login page
response = client.post("/auth/register", data={"username": "a", "password": "a"})
assert "http://localhost/auth/login" == response.headers["Location"]
# test that the user was inserted into the database
with app.app_context():
assert (
get_db().execute("select * from user where username = 'a'").fetchone()
is not None
)
```
And here's the `flask-unittest` version!
```py
from example.tests.conftest import AuthActions, TestBase
class TestAuth(TestBase):
def test_register(self, app, client):
# test that viewing the page renders without template errors
self.assertStatus(client.get("/auth/register"), 200)
# test that successful registration redirects to the login page
response = client.post("/auth/register", data={"username": "a", "password": "a"})
self.assertLocationHeader(response, "http://localhost/auth/login")
# test that the user was inserted into the database
with app.app_context():
self.assertIsNotNone(
get_db().execute("select * from user where username = 'a'").fetchone()
)
```
See how similar it is? The only difference is that the function should be a method in a class that is extending `flask_unittest.AppClientTestCase` with `create_app` defined. In our case, that's `TestBase` from `conftest.py` - so we extend from that.
As mentioned previously, each test method of an `AppClientTestCase` should have the parameters `self, app, client` - not necessarily with the same names but the second param **will be** the `Flask` object, and the third param **will be** the `FlaskClient` object
Also, this is using `self.assert...` functions as per `unittest` convention. However, regular `assert`s should work just fine.
Nice! Let's look at a function that uses flask globals - `test_login`
Here's the original snippet-
```py
def test_login(client, auth):
# test that viewing the page renders without template errors
assert client.get("/auth/login").status_code == 200
# test that successful login redirects to the index page
response = auth.login()
assert response.headers["Location"] == "http://localhost/"
# login request set the user_id in the session
# check that the user is loaded from the session
with client:
client.get("/")
assert session["user_id"] == 1
assert g.user["username"] == "test"
```
And here's the `flask-unittest` version-
```py
class TestAuth(TestBase):
def test_login(self, _, client):
# test that viewing the page renders without template errors
self.assertStatus(client.get("/auth/login"), 200)
# test that successful login redirects to the index page
auth = AuthActions(client)
response = auth.login()
self.assertLocationHeader(response, "http://localhost/")
# login request set the user_id in the session
# check that the user is loaded from the session
client.get("/")
self.assertEqual(session["user_id"], 1)
self.assertEqual(g.user["username"], "test")
```
(this is a continuation of the previous example for `test_register`)
Once again, very similar. But there's a couple of things to note here.
Firstly, notice we are ignoring the second argument of `test_login`, since we have no reason to use `app` here. We do, however, need to use the `FlaskClient` object
Also notice, we don't have to do `with client` to access the request context. `flask-unittest` already handles this for us, so we have direct access to `session` and `g`.
Let's check out a case where we only use the `Flask` object and not the `FlaskClient` object - in which case, we can use `AppTestCase`.
The original function, `test_get_close_db`, is defined at [`test_db.py`](https://github.com/pallets/flask/blob/master/examples/tutorial/tests/test_db.py)
```py
def test_get_close_db(app):
with app.app_context():
db = get_db()
assert db is get_db()
with pytest.raises(sqlite3.ProgrammingError) as e:
db.execute("SELECT 1")
assert "closed" in str(e.value)
```
The `flask-unittest` version can be seen at [`test_db.py`](./example/tests/test_db.py)
```py
import flask_unittest
class TestDB(flask_unittest.AppTestCase):
# create_app omitted for brevity - remember to include it!
def test_get_close_db(self, app):
with app.app_context():
db = get_db()
assert db is get_db()
try:
db.execute("SELECT 1")
except sqlite3.ProgrammingError as e:
self.assertIn("closed", str(e.args[0]))
```
Very similar once again!
%prep
%autosetup -n flask-unittest-0.1.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-flask-unittest -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.3-1
- Package Spec generated
|