summaryrefslogtreecommitdiff
path: root/python-flax.spec
blob: 840f3fcd70e00dd409dd95487ed66e5426cd90fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
%global _empty_manifest_terminate_build 0
Name:		python-flax
Version:	0.6.8
Release:	1
Summary:	Flax: A neural network library for JAX designed for flexibility
License:	Apache Software License
URL:		https://github.com/google/flax
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/dc/94/efee7afbcfdec16910f3b6bcc76ed5ed850c44e1b69630e2620a4faaf6c9/flax-0.6.8.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-jax
Requires:	python3-msgpack
Requires:	python3-optax
Requires:	python3-orbax
Requires:	python3-tensorstore
Requires:	python3-rich
Requires:	python3-typing-extensions
Requires:	python3-PyYAML
Requires:	python3-matplotlib
Requires:	python3-atari-py
Requires:	python3-clu
Requires:	python3-einops
Requires:	python3-gym
Requires:	python3-jaxlib
Requires:	python3-jraph
Requires:	python3-ml-collections
Requires:	python3-mypy
Requires:	python3-opencv-python
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-pytest-custom-exit-code
Requires:	python3-pytest-xdist
Requires:	python3-pytype
Requires:	python3-sentencepiece
Requires:	python3-tensorflow-text
Requires:	python3-tensorflow-datasets
Requires:	python3-tensorflow
Requires:	python3-torch
Requires:	python3-nbstripout

%description
<div align="center">
<img src="https://raw.githubusercontent.com/google/flax/main/images/flax_logo_250px.png" alt="logo"></img>
</div>

# Flax: A neural network library and ecosystem for JAX designed for flexibility

![Build](https://github.com/google/flax/workflows/Build/badge.svg?branch=main) [![coverage](https://badgen.net/codecov/c/github/google/flax)](https://codecov.io/github/google/flax)


[**Overview**](#overview)
| [**Quick install**](#quick-install)
| [**What does Flax look like?**](#what-does-flax-look-like)
| [**Documentation**](https://flax.readthedocs.io/)

This README is a very short intro. **To learn everything you need to know about Flax, refer to our [full documentation](https://flax.readthedocs.io/).**

Flax was originally started by engineers and researchers within the Brain Team in Google Research (in close collaboration with the JAX team), and is now developed jointly with the open source community.

Flax is being used by a growing
community of hundreds of folks in various Alphabet research departments
for their daily work, as well as a [growing community
of open source
projects](https://github.com/google/flax/network/dependents?dependent_type=REPOSITORY).

The Flax team's mission is to serve the growing JAX neural network
research ecosystem -- both within Alphabet and with the broader community,
and to explore the use-cases where JAX shines. We use GitHub for almost
all of our coordination and planning, as well as where we discuss
upcoming design changes. We welcome feedback on any of our discussion,
issue and pull request threads. We are in the process of moving some
remaining internal design docs and conversation threads to GitHub
discussions, issues and pull requests. We hope to increasingly engage
with the needs and clarifications of the broader ecosystem. Please let
us know how we can help!

Please report any feature requests,
issues, questions or concerns in our [discussion
forum](https://github.com/google/flax/discussions), or just let us
know what you're working on!

We expect to improve Flax, but we don't anticipate significant
breaking changes to the core API. We use [Changelog](https://github.com/google/flax/tree/main/CHANGELOG.md)
entries and deprecation warnings when possible.

In case you want to reach us directly, we're at flax-dev@google.com.

## Overview

Flax is a high-performance neural network library and ecosystem for
JAX that is **designed for flexibility**:
Try new forms of training by forking an example and by modifying the training
loop, not by adding features to a framework.

Flax is being developed in close collaboration with the JAX team and
comes with everything you need to start your research, including:

* **Neural network API** (`flax.linen`): Dense, Conv, {Batch|Layer|Group} Norm, Attention, Pooling, {LSTM|GRU} Cell, Dropout

* **Utilities and patterns**: replicated training, serialization and checkpointing, metrics, prefetching on device

* **Educational examples** that work out of the box: MNIST, LSTM seq2seq, Graph Neural Networks, Sequence Tagging

* **Fast, tuned large-scale end-to-end examples**: CIFAR10, ResNet on ImageNet, Transformer LM1b

## Quick install

You will need Python 3.6 or later, and a working [JAX](https://github.com/google/jax/blob/main/README.md)
installation (with or without GPU support - refer to [the instructions](https://github.com/google/jax/blob/main/README.md)).
For a CPU-only version of JAX:

```
pip install --upgrade pip # To support manylinux2010 wheels.
pip install --upgrade jax jaxlib # CPU-only
```

Then, install Flax from PyPi:

```
pip install flax
```

To upgrade to the latest version of Flax, you can use:

```
pip install --upgrade git+https://github.com/google/flax.git
```
To install some additional dependencies (like `matplotlib`) that are required but not included
by some dependencies, you can use:

```bash
pip install flax[all]
```

## What does Flax look like?

We provide three examples using the Flax API: a simple multi-layer perceptron, a CNN and an auto-encoder.

To learn more about the `Module` abstraction, check out our [docs](https://flax.readthedocs.io/), our [broad intro to the Module abstraction](https://github.com/google/flax/blob/main/docs/notebooks/linen_intro.ipynb). For additional concrete demonstrations of best practices, refer to our
[guides](https://flax.readthedocs.io/en/latest/guides/index.html) and
[developer notes](https://flax.readthedocs.io/en/latest/developer_notes/index.html).

```py
from typing import Sequence

import numpy as np
import jax
import jax.numpy as jnp
import flax.linen as nn

class MLP(nn.Module):
  features: Sequence[int]

  @nn.compact
  def __call__(self, x):
    for feat in self.features[:-1]:
      x = nn.relu(nn.Dense(feat)(x))
    x = nn.Dense(self.features[-1])(x)
    return x

model = MLP([12, 8, 4])
batch = jnp.ones((32, 10))
variables = model.init(jax.random.PRNGKey(0), batch)
output = model.apply(variables, batch)
```

```py
class CNN(nn.Module):
  @nn.compact
  def __call__(self, x):
    x = nn.Conv(features=32, kernel_size=(3, 3))(x)
    x = nn.relu(x)
    x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
    x = nn.Conv(features=64, kernel_size=(3, 3))(x)
    x = nn.relu(x)
    x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
    x = x.reshape((x.shape[0], -1))  # flatten
    x = nn.Dense(features=256)(x)
    x = nn.relu(x)
    x = nn.Dense(features=10)(x)
    x = nn.log_softmax(x)
    return x

model = CNN()
batch = jnp.ones((32, 64, 64, 10))  # (N, H, W, C) format
variables = model.init(jax.random.PRNGKey(0), batch)
output = model.apply(variables, batch)
```

```py
class AutoEncoder(nn.Module):
  encoder_widths: Sequence[int]
  decoder_widths: Sequence[int]
  input_shape: Sequence[int]

  def setup(self):
    input_dim = np.prod(self.input_shape)
    self.encoder = MLP(self.encoder_widths)
    self.decoder = MLP(self.decoder_widths + (input_dim,))

  def __call__(self, x):
    return self.decode(self.encode(x))

  def encode(self, x):
    assert x.shape[1:] == self.input_shape
    return self.encoder(jnp.reshape(x, (x.shape[0], -1)))

  def decode(self, z):
    z = self.decoder(z)
    x = nn.sigmoid(z)
    x = jnp.reshape(x, (x.shape[0],) + self.input_shape)
    return x

model = AutoEncoder(encoder_widths=[20, 10, 5],
                    decoder_widths=[5, 10, 20],
                    input_shape=(12,))
batch = jnp.ones((16, 12))
variables = model.init(jax.random.PRNGKey(0), batch)
encoded = model.apply(variables, batch, method=model.encode)
decoded = model.apply(variables, encoded, method=model.decode)
```

## 🤗 Hugging Face

In-detail examples to train and evaluate a variety of Flax models for
Natural Language Processing, Computer Vision, and Speech Recognition are
actively maintained in the [🤗 Transformers repository](https://github.com/huggingface/transformers/tree/master/examples/flax).

As of October 2021, the [19 most-used Transformer architectures](https://huggingface.co/transformers/#supported-frameworks) are supported in Flax
and over 5000 pretrained checkpoints in Flax have been uploaded to the [🤗 Hub](https://huggingface.co/models?library=jax&sort=downloads).

## Citing Flax

To cite this repository:

```
@software{flax2020github,
  author = {Jonathan Heek and Anselm Levskaya and Avital Oliver and Marvin Ritter and Bertrand Rondepierre and Andreas Steiner and Marc van {Z}ee},
  title = {{F}lax: A neural network library and ecosystem for {JAX}},
  url = {http://github.com/google/flax},
  version = {0.6.8},
  year = {2023},
}
```

In the above bibtex entry, names are in alphabetical order, the version number
is intended to be that from [flax/version.py](https://github.com/google/flax/blob/main/flax/version.py), and the year corresponds to the project's open-source release.

## Note

Flax is an open source project maintained by a dedicated team in Google Research, but is not an official Google product.


%package -n python3-flax
Summary:	Flax: A neural network library for JAX designed for flexibility
Provides:	python-flax
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-flax
<div align="center">
<img src="https://raw.githubusercontent.com/google/flax/main/images/flax_logo_250px.png" alt="logo"></img>
</div>

# Flax: A neural network library and ecosystem for JAX designed for flexibility

![Build](https://github.com/google/flax/workflows/Build/badge.svg?branch=main) [![coverage](https://badgen.net/codecov/c/github/google/flax)](https://codecov.io/github/google/flax)


[**Overview**](#overview)
| [**Quick install**](#quick-install)
| [**What does Flax look like?**](#what-does-flax-look-like)
| [**Documentation**](https://flax.readthedocs.io/)

This README is a very short intro. **To learn everything you need to know about Flax, refer to our [full documentation](https://flax.readthedocs.io/).**

Flax was originally started by engineers and researchers within the Brain Team in Google Research (in close collaboration with the JAX team), and is now developed jointly with the open source community.

Flax is being used by a growing
community of hundreds of folks in various Alphabet research departments
for their daily work, as well as a [growing community
of open source
projects](https://github.com/google/flax/network/dependents?dependent_type=REPOSITORY).

The Flax team's mission is to serve the growing JAX neural network
research ecosystem -- both within Alphabet and with the broader community,
and to explore the use-cases where JAX shines. We use GitHub for almost
all of our coordination and planning, as well as where we discuss
upcoming design changes. We welcome feedback on any of our discussion,
issue and pull request threads. We are in the process of moving some
remaining internal design docs and conversation threads to GitHub
discussions, issues and pull requests. We hope to increasingly engage
with the needs and clarifications of the broader ecosystem. Please let
us know how we can help!

Please report any feature requests,
issues, questions or concerns in our [discussion
forum](https://github.com/google/flax/discussions), or just let us
know what you're working on!

We expect to improve Flax, but we don't anticipate significant
breaking changes to the core API. We use [Changelog](https://github.com/google/flax/tree/main/CHANGELOG.md)
entries and deprecation warnings when possible.

In case you want to reach us directly, we're at flax-dev@google.com.

## Overview

Flax is a high-performance neural network library and ecosystem for
JAX that is **designed for flexibility**:
Try new forms of training by forking an example and by modifying the training
loop, not by adding features to a framework.

Flax is being developed in close collaboration with the JAX team and
comes with everything you need to start your research, including:

* **Neural network API** (`flax.linen`): Dense, Conv, {Batch|Layer|Group} Norm, Attention, Pooling, {LSTM|GRU} Cell, Dropout

* **Utilities and patterns**: replicated training, serialization and checkpointing, metrics, prefetching on device

* **Educational examples** that work out of the box: MNIST, LSTM seq2seq, Graph Neural Networks, Sequence Tagging

* **Fast, tuned large-scale end-to-end examples**: CIFAR10, ResNet on ImageNet, Transformer LM1b

## Quick install

You will need Python 3.6 or later, and a working [JAX](https://github.com/google/jax/blob/main/README.md)
installation (with or without GPU support - refer to [the instructions](https://github.com/google/jax/blob/main/README.md)).
For a CPU-only version of JAX:

```
pip install --upgrade pip # To support manylinux2010 wheels.
pip install --upgrade jax jaxlib # CPU-only
```

Then, install Flax from PyPi:

```
pip install flax
```

To upgrade to the latest version of Flax, you can use:

```
pip install --upgrade git+https://github.com/google/flax.git
```
To install some additional dependencies (like `matplotlib`) that are required but not included
by some dependencies, you can use:

```bash
pip install flax[all]
```

## What does Flax look like?

We provide three examples using the Flax API: a simple multi-layer perceptron, a CNN and an auto-encoder.

To learn more about the `Module` abstraction, check out our [docs](https://flax.readthedocs.io/), our [broad intro to the Module abstraction](https://github.com/google/flax/blob/main/docs/notebooks/linen_intro.ipynb). For additional concrete demonstrations of best practices, refer to our
[guides](https://flax.readthedocs.io/en/latest/guides/index.html) and
[developer notes](https://flax.readthedocs.io/en/latest/developer_notes/index.html).

```py
from typing import Sequence

import numpy as np
import jax
import jax.numpy as jnp
import flax.linen as nn

class MLP(nn.Module):
  features: Sequence[int]

  @nn.compact
  def __call__(self, x):
    for feat in self.features[:-1]:
      x = nn.relu(nn.Dense(feat)(x))
    x = nn.Dense(self.features[-1])(x)
    return x

model = MLP([12, 8, 4])
batch = jnp.ones((32, 10))
variables = model.init(jax.random.PRNGKey(0), batch)
output = model.apply(variables, batch)
```

```py
class CNN(nn.Module):
  @nn.compact
  def __call__(self, x):
    x = nn.Conv(features=32, kernel_size=(3, 3))(x)
    x = nn.relu(x)
    x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
    x = nn.Conv(features=64, kernel_size=(3, 3))(x)
    x = nn.relu(x)
    x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
    x = x.reshape((x.shape[0], -1))  # flatten
    x = nn.Dense(features=256)(x)
    x = nn.relu(x)
    x = nn.Dense(features=10)(x)
    x = nn.log_softmax(x)
    return x

model = CNN()
batch = jnp.ones((32, 64, 64, 10))  # (N, H, W, C) format
variables = model.init(jax.random.PRNGKey(0), batch)
output = model.apply(variables, batch)
```

```py
class AutoEncoder(nn.Module):
  encoder_widths: Sequence[int]
  decoder_widths: Sequence[int]
  input_shape: Sequence[int]

  def setup(self):
    input_dim = np.prod(self.input_shape)
    self.encoder = MLP(self.encoder_widths)
    self.decoder = MLP(self.decoder_widths + (input_dim,))

  def __call__(self, x):
    return self.decode(self.encode(x))

  def encode(self, x):
    assert x.shape[1:] == self.input_shape
    return self.encoder(jnp.reshape(x, (x.shape[0], -1)))

  def decode(self, z):
    z = self.decoder(z)
    x = nn.sigmoid(z)
    x = jnp.reshape(x, (x.shape[0],) + self.input_shape)
    return x

model = AutoEncoder(encoder_widths=[20, 10, 5],
                    decoder_widths=[5, 10, 20],
                    input_shape=(12,))
batch = jnp.ones((16, 12))
variables = model.init(jax.random.PRNGKey(0), batch)
encoded = model.apply(variables, batch, method=model.encode)
decoded = model.apply(variables, encoded, method=model.decode)
```

## 🤗 Hugging Face

In-detail examples to train and evaluate a variety of Flax models for
Natural Language Processing, Computer Vision, and Speech Recognition are
actively maintained in the [🤗 Transformers repository](https://github.com/huggingface/transformers/tree/master/examples/flax).

As of October 2021, the [19 most-used Transformer architectures](https://huggingface.co/transformers/#supported-frameworks) are supported in Flax
and over 5000 pretrained checkpoints in Flax have been uploaded to the [🤗 Hub](https://huggingface.co/models?library=jax&sort=downloads).

## Citing Flax

To cite this repository:

```
@software{flax2020github,
  author = {Jonathan Heek and Anselm Levskaya and Avital Oliver and Marvin Ritter and Bertrand Rondepierre and Andreas Steiner and Marc van {Z}ee},
  title = {{F}lax: A neural network library and ecosystem for {JAX}},
  url = {http://github.com/google/flax},
  version = {0.6.8},
  year = {2023},
}
```

In the above bibtex entry, names are in alphabetical order, the version number
is intended to be that from [flax/version.py](https://github.com/google/flax/blob/main/flax/version.py), and the year corresponds to the project's open-source release.

## Note

Flax is an open source project maintained by a dedicated team in Google Research, but is not an official Google product.


%package help
Summary:	Development documents and examples for flax
Provides:	python3-flax-doc
%description help
<div align="center">
<img src="https://raw.githubusercontent.com/google/flax/main/images/flax_logo_250px.png" alt="logo"></img>
</div>

# Flax: A neural network library and ecosystem for JAX designed for flexibility

![Build](https://github.com/google/flax/workflows/Build/badge.svg?branch=main) [![coverage](https://badgen.net/codecov/c/github/google/flax)](https://codecov.io/github/google/flax)


[**Overview**](#overview)
| [**Quick install**](#quick-install)
| [**What does Flax look like?**](#what-does-flax-look-like)
| [**Documentation**](https://flax.readthedocs.io/)

This README is a very short intro. **To learn everything you need to know about Flax, refer to our [full documentation](https://flax.readthedocs.io/).**

Flax was originally started by engineers and researchers within the Brain Team in Google Research (in close collaboration with the JAX team), and is now developed jointly with the open source community.

Flax is being used by a growing
community of hundreds of folks in various Alphabet research departments
for their daily work, as well as a [growing community
of open source
projects](https://github.com/google/flax/network/dependents?dependent_type=REPOSITORY).

The Flax team's mission is to serve the growing JAX neural network
research ecosystem -- both within Alphabet and with the broader community,
and to explore the use-cases where JAX shines. We use GitHub for almost
all of our coordination and planning, as well as where we discuss
upcoming design changes. We welcome feedback on any of our discussion,
issue and pull request threads. We are in the process of moving some
remaining internal design docs and conversation threads to GitHub
discussions, issues and pull requests. We hope to increasingly engage
with the needs and clarifications of the broader ecosystem. Please let
us know how we can help!

Please report any feature requests,
issues, questions or concerns in our [discussion
forum](https://github.com/google/flax/discussions), or just let us
know what you're working on!

We expect to improve Flax, but we don't anticipate significant
breaking changes to the core API. We use [Changelog](https://github.com/google/flax/tree/main/CHANGELOG.md)
entries and deprecation warnings when possible.

In case you want to reach us directly, we're at flax-dev@google.com.

## Overview

Flax is a high-performance neural network library and ecosystem for
JAX that is **designed for flexibility**:
Try new forms of training by forking an example and by modifying the training
loop, not by adding features to a framework.

Flax is being developed in close collaboration with the JAX team and
comes with everything you need to start your research, including:

* **Neural network API** (`flax.linen`): Dense, Conv, {Batch|Layer|Group} Norm, Attention, Pooling, {LSTM|GRU} Cell, Dropout

* **Utilities and patterns**: replicated training, serialization and checkpointing, metrics, prefetching on device

* **Educational examples** that work out of the box: MNIST, LSTM seq2seq, Graph Neural Networks, Sequence Tagging

* **Fast, tuned large-scale end-to-end examples**: CIFAR10, ResNet on ImageNet, Transformer LM1b

## Quick install

You will need Python 3.6 or later, and a working [JAX](https://github.com/google/jax/blob/main/README.md)
installation (with or without GPU support - refer to [the instructions](https://github.com/google/jax/blob/main/README.md)).
For a CPU-only version of JAX:

```
pip install --upgrade pip # To support manylinux2010 wheels.
pip install --upgrade jax jaxlib # CPU-only
```

Then, install Flax from PyPi:

```
pip install flax
```

To upgrade to the latest version of Flax, you can use:

```
pip install --upgrade git+https://github.com/google/flax.git
```
To install some additional dependencies (like `matplotlib`) that are required but not included
by some dependencies, you can use:

```bash
pip install flax[all]
```

## What does Flax look like?

We provide three examples using the Flax API: a simple multi-layer perceptron, a CNN and an auto-encoder.

To learn more about the `Module` abstraction, check out our [docs](https://flax.readthedocs.io/), our [broad intro to the Module abstraction](https://github.com/google/flax/blob/main/docs/notebooks/linen_intro.ipynb). For additional concrete demonstrations of best practices, refer to our
[guides](https://flax.readthedocs.io/en/latest/guides/index.html) and
[developer notes](https://flax.readthedocs.io/en/latest/developer_notes/index.html).

```py
from typing import Sequence

import numpy as np
import jax
import jax.numpy as jnp
import flax.linen as nn

class MLP(nn.Module):
  features: Sequence[int]

  @nn.compact
  def __call__(self, x):
    for feat in self.features[:-1]:
      x = nn.relu(nn.Dense(feat)(x))
    x = nn.Dense(self.features[-1])(x)
    return x

model = MLP([12, 8, 4])
batch = jnp.ones((32, 10))
variables = model.init(jax.random.PRNGKey(0), batch)
output = model.apply(variables, batch)
```

```py
class CNN(nn.Module):
  @nn.compact
  def __call__(self, x):
    x = nn.Conv(features=32, kernel_size=(3, 3))(x)
    x = nn.relu(x)
    x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
    x = nn.Conv(features=64, kernel_size=(3, 3))(x)
    x = nn.relu(x)
    x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
    x = x.reshape((x.shape[0], -1))  # flatten
    x = nn.Dense(features=256)(x)
    x = nn.relu(x)
    x = nn.Dense(features=10)(x)
    x = nn.log_softmax(x)
    return x

model = CNN()
batch = jnp.ones((32, 64, 64, 10))  # (N, H, W, C) format
variables = model.init(jax.random.PRNGKey(0), batch)
output = model.apply(variables, batch)
```

```py
class AutoEncoder(nn.Module):
  encoder_widths: Sequence[int]
  decoder_widths: Sequence[int]
  input_shape: Sequence[int]

  def setup(self):
    input_dim = np.prod(self.input_shape)
    self.encoder = MLP(self.encoder_widths)
    self.decoder = MLP(self.decoder_widths + (input_dim,))

  def __call__(self, x):
    return self.decode(self.encode(x))

  def encode(self, x):
    assert x.shape[1:] == self.input_shape
    return self.encoder(jnp.reshape(x, (x.shape[0], -1)))

  def decode(self, z):
    z = self.decoder(z)
    x = nn.sigmoid(z)
    x = jnp.reshape(x, (x.shape[0],) + self.input_shape)
    return x

model = AutoEncoder(encoder_widths=[20, 10, 5],
                    decoder_widths=[5, 10, 20],
                    input_shape=(12,))
batch = jnp.ones((16, 12))
variables = model.init(jax.random.PRNGKey(0), batch)
encoded = model.apply(variables, batch, method=model.encode)
decoded = model.apply(variables, encoded, method=model.decode)
```

## 🤗 Hugging Face

In-detail examples to train and evaluate a variety of Flax models for
Natural Language Processing, Computer Vision, and Speech Recognition are
actively maintained in the [🤗 Transformers repository](https://github.com/huggingface/transformers/tree/master/examples/flax).

As of October 2021, the [19 most-used Transformer architectures](https://huggingface.co/transformers/#supported-frameworks) are supported in Flax
and over 5000 pretrained checkpoints in Flax have been uploaded to the [🤗 Hub](https://huggingface.co/models?library=jax&sort=downloads).

## Citing Flax

To cite this repository:

```
@software{flax2020github,
  author = {Jonathan Heek and Anselm Levskaya and Avital Oliver and Marvin Ritter and Bertrand Rondepierre and Andreas Steiner and Marc van {Z}ee},
  title = {{F}lax: A neural network library and ecosystem for {JAX}},
  url = {http://github.com/google/flax},
  version = {0.6.8},
  year = {2023},
}
```

In the above bibtex entry, names are in alphabetical order, the version number
is intended to be that from [flax/version.py](https://github.com/google/flax/blob/main/flax/version.py), and the year corresponds to the project's open-source release.

## Note

Flax is an open source project maintained by a dedicated team in Google Research, but is not an official Google product.


%prep
%autosetup -n flax-0.6.8

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-flax -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.8-1
- Package Spec generated