blob: cf7ff9c24d33424071cd552ac8dc07c0de000d3d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
%global _empty_manifest_terminate_build 0
Name: python-flowtorch
Version: 0.8
Release: 1
Summary: Normalizing Flows for PyTorch
License: MIT
URL: https://flowtorch.ai/users
Source0: https://mirrors.aliyun.com/pypi/web/packages/5a/ac/c6527619b342a8d7bf5dd82c1d49c750946c2512ebe66187c81c143fcfa0/flowtorch-0.8.tar.gz
BuildArch: noarch
Requires: python3-torch
Requires: python3-numpy
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-scipy
Requires: python3-black
Requires: python3-flake8
Requires: python3-flake8-bugbear
Requires: python3-mypy
Requires: python3-toml
Requires: python3-usort
Requires: python3-numpy
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-scipy
%description
<p align="center"><img src="https://github.com/facebookincubator/flowtorch/raw/main/website/static/img/logo.svg" width="200rem" /></p>
[](https://github.com/facebookincubator/flowtorch/actions?query=workflow%3A%22Python+package%22)
Copyright © Meta Platforms, Inc
This source code is licensed under the MIT license found in the
[LICENSE.txt](https://github.com/facebookincubator/flowtorch/blob/main/LICENSE.txt) file in the root directory of this source tree.
# Overview
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called [Normalizing Flows](https://arxiv.org/abs/1908.09257).
# Installing
An easy way to get started is to install from source:
git clone https://github.com/facebookincubator/flowtorch.git
cd flowtorch
pip install -e .
# Further Information
We refer you to the [FlowTorch website](https://flowtorch.ai) for more information about installation, using the library, and becoming a contributor. Here is a handy guide:
* [What are normalizing flows?](https://flowtorch.ai/users)
* [How do I install FlowTorch?](https://flowtorch.ai/users/installation)
* [How do I construct and train a distribution?](https://flowtorch.ai/users/start)
* [How do I contribute new normalizing flow methods?](https://flowtorch.ai/dev)
* [Where can I report bugs?](https://github.com/facebookincubator/flowtorch/issues)
* [Where can I ask general questions and make feature requests?](https://github.com/facebookincubator/flowtorch/discussions)
* [What features are planned for the near future?](https://github.com/facebookincubator/flowtorch/projects)
%package -n python3-flowtorch
Summary: Normalizing Flows for PyTorch
Provides: python-flowtorch
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-flowtorch
<p align="center"><img src="https://github.com/facebookincubator/flowtorch/raw/main/website/static/img/logo.svg" width="200rem" /></p>
[](https://github.com/facebookincubator/flowtorch/actions?query=workflow%3A%22Python+package%22)
Copyright © Meta Platforms, Inc
This source code is licensed under the MIT license found in the
[LICENSE.txt](https://github.com/facebookincubator/flowtorch/blob/main/LICENSE.txt) file in the root directory of this source tree.
# Overview
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called [Normalizing Flows](https://arxiv.org/abs/1908.09257).
# Installing
An easy way to get started is to install from source:
git clone https://github.com/facebookincubator/flowtorch.git
cd flowtorch
pip install -e .
# Further Information
We refer you to the [FlowTorch website](https://flowtorch.ai) for more information about installation, using the library, and becoming a contributor. Here is a handy guide:
* [What are normalizing flows?](https://flowtorch.ai/users)
* [How do I install FlowTorch?](https://flowtorch.ai/users/installation)
* [How do I construct and train a distribution?](https://flowtorch.ai/users/start)
* [How do I contribute new normalizing flow methods?](https://flowtorch.ai/dev)
* [Where can I report bugs?](https://github.com/facebookincubator/flowtorch/issues)
* [Where can I ask general questions and make feature requests?](https://github.com/facebookincubator/flowtorch/discussions)
* [What features are planned for the near future?](https://github.com/facebookincubator/flowtorch/projects)
%package help
Summary: Development documents and examples for flowtorch
Provides: python3-flowtorch-doc
%description help
<p align="center"><img src="https://github.com/facebookincubator/flowtorch/raw/main/website/static/img/logo.svg" width="200rem" /></p>
[](https://github.com/facebookincubator/flowtorch/actions?query=workflow%3A%22Python+package%22)
Copyright © Meta Platforms, Inc
This source code is licensed under the MIT license found in the
[LICENSE.txt](https://github.com/facebookincubator/flowtorch/blob/main/LICENSE.txt) file in the root directory of this source tree.
# Overview
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called [Normalizing Flows](https://arxiv.org/abs/1908.09257).
# Installing
An easy way to get started is to install from source:
git clone https://github.com/facebookincubator/flowtorch.git
cd flowtorch
pip install -e .
# Further Information
We refer you to the [FlowTorch website](https://flowtorch.ai) for more information about installation, using the library, and becoming a contributor. Here is a handy guide:
* [What are normalizing flows?](https://flowtorch.ai/users)
* [How do I install FlowTorch?](https://flowtorch.ai/users/installation)
* [How do I construct and train a distribution?](https://flowtorch.ai/users/start)
* [How do I contribute new normalizing flow methods?](https://flowtorch.ai/dev)
* [Where can I report bugs?](https://github.com/facebookincubator/flowtorch/issues)
* [Where can I ask general questions and make feature requests?](https://github.com/facebookincubator/flowtorch/discussions)
* [What features are planned for the near future?](https://github.com/facebookincubator/flowtorch/projects)
%prep
%autosetup -n flowtorch-0.8
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-flowtorch -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.8-1
- Package Spec generated
|