summaryrefslogtreecommitdiff
path: root/python-formulae.spec
blob: 5d826c4b53a5d4b7c1247cece51f983783d03af6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
%global _empty_manifest_terminate_build 0
Name:		python-formulae
Version:	0.3.4
Release:	1
Summary:	Formulas for mixed-effects models in Python
License:	MIT
URL:		https://github.com/bambinos/formulae
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/43/a7/4a3043b24f76d318eb6f12464aca4daef39c23630803eeb6acbae8a78fc3/formulae-0.3.4.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-scipy

%description
<img src="docs/logo/formulae_large.png" width=250></img>

[![PyPI version](https://badge.fury.io/py/formulae.svg)](https://badge.fury.io/py/formulae)
[![codecov](https://codecov.io/gh/bambinos/formulae/branch/master/graph/badge.svg)](https://codecov.io/gh/bambinos/formulae)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)

# formulae

formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations like [Patsy](https://github.com/pydata/patsy) or [formulaic](https://github.com/matthewwardrop/formulaic) is that formulae can work with formulas describing a model with both common and group specific effects (a.k.a. fixed and random effects, respectively).

This package has been written to make it easier to specify models with group effects in [Bambi](https://github.com/bambinos/bambi), a package that makes it easy to work with Bayesian GLMMs in Python, but it could be used independently as a backend for another library. The approach in this library is to extend classical statistical formulas in a similar way than in R package [lme4](https://CRAN.R-project.org/package=lme4).

## Installation

formulae requires a working Python interpreter (3.7+) and the libraries numpy, scipy and pandas with versions specified in the [requirements.txt](https://github.com/bambinos/formulae/blob/master/requirements.txt) file.

Assuming a standard Python environment is installed on your machine (including pip), the latest release of formulae can be installed in one line using pip:

`pip install formulae`

Alternatively, if you want the development version of the package you can install from GitHub:

`pip install git+https://github.com/bambinos/formulae.git`

## Documentation

The official documentation can be found [here](https://bambinos.github.io/formulae)

## Notes

- The `data` argument only accepts objects of class `pandas.DataFrame`.
- `y ~ .` is not implemented and won't be implemented in a first version. However, it is planned to be included in the future.




%package -n python3-formulae
Summary:	Formulas for mixed-effects models in Python
Provides:	python-formulae
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-formulae
<img src="docs/logo/formulae_large.png" width=250></img>

[![PyPI version](https://badge.fury.io/py/formulae.svg)](https://badge.fury.io/py/formulae)
[![codecov](https://codecov.io/gh/bambinos/formulae/branch/master/graph/badge.svg)](https://codecov.io/gh/bambinos/formulae)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)

# formulae

formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations like [Patsy](https://github.com/pydata/patsy) or [formulaic](https://github.com/matthewwardrop/formulaic) is that formulae can work with formulas describing a model with both common and group specific effects (a.k.a. fixed and random effects, respectively).

This package has been written to make it easier to specify models with group effects in [Bambi](https://github.com/bambinos/bambi), a package that makes it easy to work with Bayesian GLMMs in Python, but it could be used independently as a backend for another library. The approach in this library is to extend classical statistical formulas in a similar way than in R package [lme4](https://CRAN.R-project.org/package=lme4).

## Installation

formulae requires a working Python interpreter (3.7+) and the libraries numpy, scipy and pandas with versions specified in the [requirements.txt](https://github.com/bambinos/formulae/blob/master/requirements.txt) file.

Assuming a standard Python environment is installed on your machine (including pip), the latest release of formulae can be installed in one line using pip:

`pip install formulae`

Alternatively, if you want the development version of the package you can install from GitHub:

`pip install git+https://github.com/bambinos/formulae.git`

## Documentation

The official documentation can be found [here](https://bambinos.github.io/formulae)

## Notes

- The `data` argument only accepts objects of class `pandas.DataFrame`.
- `y ~ .` is not implemented and won't be implemented in a first version. However, it is planned to be included in the future.




%package help
Summary:	Development documents and examples for formulae
Provides:	python3-formulae-doc
%description help
<img src="docs/logo/formulae_large.png" width=250></img>

[![PyPI version](https://badge.fury.io/py/formulae.svg)](https://badge.fury.io/py/formulae)
[![codecov](https://codecov.io/gh/bambinos/formulae/branch/master/graph/badge.svg)](https://codecov.io/gh/bambinos/formulae)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)

# formulae

formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations like [Patsy](https://github.com/pydata/patsy) or [formulaic](https://github.com/matthewwardrop/formulaic) is that formulae can work with formulas describing a model with both common and group specific effects (a.k.a. fixed and random effects, respectively).

This package has been written to make it easier to specify models with group effects in [Bambi](https://github.com/bambinos/bambi), a package that makes it easy to work with Bayesian GLMMs in Python, but it could be used independently as a backend for another library. The approach in this library is to extend classical statistical formulas in a similar way than in R package [lme4](https://CRAN.R-project.org/package=lme4).

## Installation

formulae requires a working Python interpreter (3.7+) and the libraries numpy, scipy and pandas with versions specified in the [requirements.txt](https://github.com/bambinos/formulae/blob/master/requirements.txt) file.

Assuming a standard Python environment is installed on your machine (including pip), the latest release of formulae can be installed in one line using pip:

`pip install formulae`

Alternatively, if you want the development version of the package you can install from GitHub:

`pip install git+https://github.com/bambinos/formulae.git`

## Documentation

The official documentation can be found [here](https://bambinos.github.io/formulae)

## Notes

- The `data` argument only accepts objects of class `pandas.DataFrame`.
- `y ~ .` is not implemented and won't be implemented in a first version. However, it is planned to be included in the future.




%prep
%autosetup -n formulae-0.3.4

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-formulae -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.4-1
- Package Spec generated