1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
%global _empty_manifest_terminate_build 0
Name: python-fuzzy-match
Version: 0.0.1
Release: 1
Summary: Fuzzy string matching in Python
License: MIT
URL: https://github.com/darwinagain/fuzzy-match
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/2f/88/7d2bc2d9d87d3c7437292def951ad8fbcb7956c3a8b9e250ec229623f01e/fuzzy-match-0.0.1.tar.gz
BuildArch: noarch
%description
# Fuzzy-Match
Fuzzy string matching in Python. By default it uses [Trigrams](https://en.wikipedia.org/wiki/Trigram) to calculate a similarity score and find matches by splitting strings into ngrams with a length of 3. The length of the ngram can be altered if desired. Also, [Cosine](https://en.wikipedia.org/wiki/Cosine_similarity), [Levenshtein Distance](https://en.wikipedia.org/wiki/Levenshtein_distance), and [Jaro-Winkler Distance](https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance) algorithims are also available as alternatives.
# Usage
```python
>>> from fuzzy_match import match
>>> from fuzzy_match import algorithims
```
### Trigram
```python
>>> algorithims.trigram("this is a test string", "this is another test string")
0.703704
```
### Cosine
```python
>>> algorithims.cosine("this is a test string", "this is another test string")
0.7999999999999998
```
### Levenshtein
```python
>>> algorithims.levenshtein("this is a test string", "this is another test string")
0.7777777777777778
```
### Jaro-Winkler
```python
>>> algorithims.jaro_winkler("this is a test string", "this is another test string")
0.798941798941799
```
### Match
```python
>>> choices = ["simple strings", "strings are simple", "sim string", "string to match", "matching simple strings", "matching strings again"]
>>> match.extract("simple string", choices, limit=2)
[('simple strings', 0.8), ('sim string', 0.642857)]
>>> match.extractOne("simple string", choices)
('simple strings', 0.8)
```
You can also pass additional arguments to `extract` and `extractOne` to set a score cutoff value or use one of the other algorithims mentioned above. Here is an example:
```python
>>> match.extract("simple string", choices, match_type='levenshtein', score_cutoff=0.7)
[('simple strings', 0.9285714285714286), ('sim string', 0.7692307692307693)]
```
`match_type` options include `trigram`, `cosine`, `levenshtein`, `jaro_winkler`
%package -n python3-fuzzy-match
Summary: Fuzzy string matching in Python
Provides: python-fuzzy-match
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-fuzzy-match
# Fuzzy-Match
Fuzzy string matching in Python. By default it uses [Trigrams](https://en.wikipedia.org/wiki/Trigram) to calculate a similarity score and find matches by splitting strings into ngrams with a length of 3. The length of the ngram can be altered if desired. Also, [Cosine](https://en.wikipedia.org/wiki/Cosine_similarity), [Levenshtein Distance](https://en.wikipedia.org/wiki/Levenshtein_distance), and [Jaro-Winkler Distance](https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance) algorithims are also available as alternatives.
# Usage
```python
>>> from fuzzy_match import match
>>> from fuzzy_match import algorithims
```
### Trigram
```python
>>> algorithims.trigram("this is a test string", "this is another test string")
0.703704
```
### Cosine
```python
>>> algorithims.cosine("this is a test string", "this is another test string")
0.7999999999999998
```
### Levenshtein
```python
>>> algorithims.levenshtein("this is a test string", "this is another test string")
0.7777777777777778
```
### Jaro-Winkler
```python
>>> algorithims.jaro_winkler("this is a test string", "this is another test string")
0.798941798941799
```
### Match
```python
>>> choices = ["simple strings", "strings are simple", "sim string", "string to match", "matching simple strings", "matching strings again"]
>>> match.extract("simple string", choices, limit=2)
[('simple strings', 0.8), ('sim string', 0.642857)]
>>> match.extractOne("simple string", choices)
('simple strings', 0.8)
```
You can also pass additional arguments to `extract` and `extractOne` to set a score cutoff value or use one of the other algorithims mentioned above. Here is an example:
```python
>>> match.extract("simple string", choices, match_type='levenshtein', score_cutoff=0.7)
[('simple strings', 0.9285714285714286), ('sim string', 0.7692307692307693)]
```
`match_type` options include `trigram`, `cosine`, `levenshtein`, `jaro_winkler`
%package help
Summary: Development documents and examples for fuzzy-match
Provides: python3-fuzzy-match-doc
%description help
# Fuzzy-Match
Fuzzy string matching in Python. By default it uses [Trigrams](https://en.wikipedia.org/wiki/Trigram) to calculate a similarity score and find matches by splitting strings into ngrams with a length of 3. The length of the ngram can be altered if desired. Also, [Cosine](https://en.wikipedia.org/wiki/Cosine_similarity), [Levenshtein Distance](https://en.wikipedia.org/wiki/Levenshtein_distance), and [Jaro-Winkler Distance](https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance) algorithims are also available as alternatives.
# Usage
```python
>>> from fuzzy_match import match
>>> from fuzzy_match import algorithims
```
### Trigram
```python
>>> algorithims.trigram("this is a test string", "this is another test string")
0.703704
```
### Cosine
```python
>>> algorithims.cosine("this is a test string", "this is another test string")
0.7999999999999998
```
### Levenshtein
```python
>>> algorithims.levenshtein("this is a test string", "this is another test string")
0.7777777777777778
```
### Jaro-Winkler
```python
>>> algorithims.jaro_winkler("this is a test string", "this is another test string")
0.798941798941799
```
### Match
```python
>>> choices = ["simple strings", "strings are simple", "sim string", "string to match", "matching simple strings", "matching strings again"]
>>> match.extract("simple string", choices, limit=2)
[('simple strings', 0.8), ('sim string', 0.642857)]
>>> match.extractOne("simple string", choices)
('simple strings', 0.8)
```
You can also pass additional arguments to `extract` and `extractOne` to set a score cutoff value or use one of the other algorithims mentioned above. Here is an example:
```python
>>> match.extract("simple string", choices, match_type='levenshtein', score_cutoff=0.7)
[('simple strings', 0.9285714285714286), ('sim string', 0.7692307692307693)]
```
`match_type` options include `trigram`, `cosine`, `levenshtein`, `jaro_winkler`
%prep
%autosetup -n fuzzy-match-0.0.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-fuzzy-match -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.1-1
- Package Spec generated
|