summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-15 06:59:38 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-15 06:59:38 +0000
commit2174586b9c9aaf5470eb58c7ebd80f27433b8c1e (patch)
treee5b4ee92f22e6f573236f7190bbda253b892a315
parentecb446da5a1757ce722d2694584738850edafae6 (diff)
automatic import of python-gcmtools
-rw-r--r--.gitignore1
-rw-r--r--python-gcmtools.spec586
-rw-r--r--sources1
3 files changed, 588 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..c485141 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/gcmtools-0.5.8.tar.gz
diff --git a/python-gcmtools.spec b/python-gcmtools.spec
new file mode 100644
index 0000000..fa5d943
--- /dev/null
+++ b/python-gcmtools.spec
@@ -0,0 +1,586 @@
+%global _empty_manifest_terminate_build 0
+Name: python-gcmtools
+Version: 0.5.8
+Release: 1
+Summary: GCM Output Analysis Tools
+License: GNU General Public License
+URL: https://github.com/alphaparrot/gcmtools
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f8/a8/374cfc0853b446c5786781c30859234b7a28fdc0474948842d4f903ec204/gcmtools-0.5.8.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-netCDF4
+Requires: python3-matplotlib
+Requires: python3-scipy
+
+%description
+# gcmtools
+
+By Adiv Paradise
+
+_DEPENDENCIES: matplotlib, numpy, basemap, python-netcdf4_
+_OPTIONAL (for interactive plots): nodejs, jupyter-widgets, jupyter-matplotlib_
+
+This is a collection of custom functions, wrappers, and other tools to make analyzing
+output from a gcm just slightly easier. Mostly it functions as a wrapper for matplotlib
+and basemap, but it includes useful things like a function for area-weighted math and a
+function for computing the streamfunction and plotting the Hadley cells.
+
+## Installation
+
+You can either download and build/use from this repository, or you can use pip:
+
+``pip install gcmtools``
+
+
+## Usage
+
+### ``parse(filename,variable,\*\*kwargs)``
+
+Returns the data contained in variable, along with the latitude and longitude arrays.
+
+ * filename
+
+ Specifies the name of the netCDF4 file to open
+
+ * variable
+
+ Specifies the variable name to use
+
+ * lat (optional)
+
+ What name to use for the latitude array when parsing the file
+
+ * lon (optional)
+
+ What name to use for the longitude array when parsing the file
+
+
+### ``make2d(variable,\*\*kwargs)``
+
+Returns a 2D slice of the given variable
+
+ * variable
+
+ The data array to slice
+
+ * ignoreNaNs (optional)
+
+ Ignore NaNs when doing arithmetic operations (default=True)
+
+ * lat (optional)
+
+ type(int): slice the array at this latitude
+ "sum": Take the meridional sum
+ "mean": Take the meridional mean
+
+ * lon (optional)
+
+ type(int): slice the array at this longitude
+ "sum" Take the zonal sum
+ "mean": Take the zonal mean
+
+ * lev (optional)
+
+ type(int): slice the array at this vertical level
+ "sum" Take the column sum
+ "mean": Take the column mean
+
+ * time (optional)
+
+ type(int): Take the snapshot of the array at this time
+ None (default): Take the time-average of the data
+
+
+### ``spatialmath(variable,\*\*kwargs)``
+
+Returns the area-weighted average or sum of the given variable
+
+ * variable
+
+ Either the name of the variable to use, or the data array itself.
+ If the file keyword is used, this should be the variable name. If
+ not, then the lat and lon arrays must be provided.
+
+ * file (optional)
+
+ The name of the file from which to extract the data
+
+ * lat (optional)
+
+ The latitude array to use (ignored if file keyword is used)
+
+ * lon (optional)
+
+ The longitude array to use (ignored if file keyword is used)
+
+ * lev (optional)
+
+ The level slice to use (see make2d() keyword options)
+
+ * time (optional)
+
+ type(int): Use the snapshot of the variable at this time
+ None (default): Use the time-average of the variable
+
+ * mean (optional)
+
+ If True (default), the global mean will be calculated. If False,
+ only the global sum will be returned.
+
+ * radius (optional)
+
+ The physical radius of the sphere with which to scale the sum
+ (if not computing the mean)
+
+
+### ``wrap2d(variable)``
+
+Add a longitude column to a 2D lat-lon array, and fill it with the first column
+
+
+### ``pcolormesh(variable,\*\*kwargs)``
+
+Create and return a pcolormesh object showing variable. ``\*\*kwargs`` can include all
+normal pcolormesh keyword arguments, and if the 'projection' keyword argument is
+specified, ``\*\*kwargs`` can also contain any Basemap arguments.
+
+gcmtools-specific arguments:
+
+ * invertx
+
+ Invert the x-axis. This is analogous to plt.gca().invert_xaxis()
+
+ * inverty
+
+ Invert the y-axis. This is analogous to plt.gca().invert_yaxis()
+
+ * symmetric
+
+ If True, compute a colormap normalization which is symmetric about zero.
+ If not None and equal to a number, compute a colormap normalization
+ symmetric about that number. Useful for divergent colormaps.
+
+Example:
+
+``pcolormesh(temperature,x=lons,y=lats,projection='moll',lon_0=0,cmap='RdBu_r',symmetric=273.15)``
+
+### ``hadley(filename,\*\*kwargs)``
+
+Compute the streamfunction, and plot the zonal mean as a function of latitude and pressure. Optionally overplot zonal wind contours.
+
+ * filename
+
+ File from which to extract the streamfunction.
+
+ * contours (optional)
+
+ If True, compute the mean zonal wind and overplot it as a series of labeled contours.
+
+ * ylog (optional)
+
+ If True, use a logarithmic scale on the y-axis (corresponding to being linear in altitude).
+
+
+
+
+
+
+%package -n python3-gcmtools
+Summary: GCM Output Analysis Tools
+Provides: python-gcmtools
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-gcmtools
+# gcmtools
+
+By Adiv Paradise
+
+_DEPENDENCIES: matplotlib, numpy, basemap, python-netcdf4_
+_OPTIONAL (for interactive plots): nodejs, jupyter-widgets, jupyter-matplotlib_
+
+This is a collection of custom functions, wrappers, and other tools to make analyzing
+output from a gcm just slightly easier. Mostly it functions as a wrapper for matplotlib
+and basemap, but it includes useful things like a function for area-weighted math and a
+function for computing the streamfunction and plotting the Hadley cells.
+
+## Installation
+
+You can either download and build/use from this repository, or you can use pip:
+
+``pip install gcmtools``
+
+
+## Usage
+
+### ``parse(filename,variable,\*\*kwargs)``
+
+Returns the data contained in variable, along with the latitude and longitude arrays.
+
+ * filename
+
+ Specifies the name of the netCDF4 file to open
+
+ * variable
+
+ Specifies the variable name to use
+
+ * lat (optional)
+
+ What name to use for the latitude array when parsing the file
+
+ * lon (optional)
+
+ What name to use for the longitude array when parsing the file
+
+
+### ``make2d(variable,\*\*kwargs)``
+
+Returns a 2D slice of the given variable
+
+ * variable
+
+ The data array to slice
+
+ * ignoreNaNs (optional)
+
+ Ignore NaNs when doing arithmetic operations (default=True)
+
+ * lat (optional)
+
+ type(int): slice the array at this latitude
+ "sum": Take the meridional sum
+ "mean": Take the meridional mean
+
+ * lon (optional)
+
+ type(int): slice the array at this longitude
+ "sum" Take the zonal sum
+ "mean": Take the zonal mean
+
+ * lev (optional)
+
+ type(int): slice the array at this vertical level
+ "sum" Take the column sum
+ "mean": Take the column mean
+
+ * time (optional)
+
+ type(int): Take the snapshot of the array at this time
+ None (default): Take the time-average of the data
+
+
+### ``spatialmath(variable,\*\*kwargs)``
+
+Returns the area-weighted average or sum of the given variable
+
+ * variable
+
+ Either the name of the variable to use, or the data array itself.
+ If the file keyword is used, this should be the variable name. If
+ not, then the lat and lon arrays must be provided.
+
+ * file (optional)
+
+ The name of the file from which to extract the data
+
+ * lat (optional)
+
+ The latitude array to use (ignored if file keyword is used)
+
+ * lon (optional)
+
+ The longitude array to use (ignored if file keyword is used)
+
+ * lev (optional)
+
+ The level slice to use (see make2d() keyword options)
+
+ * time (optional)
+
+ type(int): Use the snapshot of the variable at this time
+ None (default): Use the time-average of the variable
+
+ * mean (optional)
+
+ If True (default), the global mean will be calculated. If False,
+ only the global sum will be returned.
+
+ * radius (optional)
+
+ The physical radius of the sphere with which to scale the sum
+ (if not computing the mean)
+
+
+### ``wrap2d(variable)``
+
+Add a longitude column to a 2D lat-lon array, and fill it with the first column
+
+
+### ``pcolormesh(variable,\*\*kwargs)``
+
+Create and return a pcolormesh object showing variable. ``\*\*kwargs`` can include all
+normal pcolormesh keyword arguments, and if the 'projection' keyword argument is
+specified, ``\*\*kwargs`` can also contain any Basemap arguments.
+
+gcmtools-specific arguments:
+
+ * invertx
+
+ Invert the x-axis. This is analogous to plt.gca().invert_xaxis()
+
+ * inverty
+
+ Invert the y-axis. This is analogous to plt.gca().invert_yaxis()
+
+ * symmetric
+
+ If True, compute a colormap normalization which is symmetric about zero.
+ If not None and equal to a number, compute a colormap normalization
+ symmetric about that number. Useful for divergent colormaps.
+
+Example:
+
+``pcolormesh(temperature,x=lons,y=lats,projection='moll',lon_0=0,cmap='RdBu_r',symmetric=273.15)``
+
+### ``hadley(filename,\*\*kwargs)``
+
+Compute the streamfunction, and plot the zonal mean as a function of latitude and pressure. Optionally overplot zonal wind contours.
+
+ * filename
+
+ File from which to extract the streamfunction.
+
+ * contours (optional)
+
+ If True, compute the mean zonal wind and overplot it as a series of labeled contours.
+
+ * ylog (optional)
+
+ If True, use a logarithmic scale on the y-axis (corresponding to being linear in altitude).
+
+
+
+
+
+
+%package help
+Summary: Development documents and examples for gcmtools
+Provides: python3-gcmtools-doc
+%description help
+# gcmtools
+
+By Adiv Paradise
+
+_DEPENDENCIES: matplotlib, numpy, basemap, python-netcdf4_
+_OPTIONAL (for interactive plots): nodejs, jupyter-widgets, jupyter-matplotlib_
+
+This is a collection of custom functions, wrappers, and other tools to make analyzing
+output from a gcm just slightly easier. Mostly it functions as a wrapper for matplotlib
+and basemap, but it includes useful things like a function for area-weighted math and a
+function for computing the streamfunction and plotting the Hadley cells.
+
+## Installation
+
+You can either download and build/use from this repository, or you can use pip:
+
+``pip install gcmtools``
+
+
+## Usage
+
+### ``parse(filename,variable,\*\*kwargs)``
+
+Returns the data contained in variable, along with the latitude and longitude arrays.
+
+ * filename
+
+ Specifies the name of the netCDF4 file to open
+
+ * variable
+
+ Specifies the variable name to use
+
+ * lat (optional)
+
+ What name to use for the latitude array when parsing the file
+
+ * lon (optional)
+
+ What name to use for the longitude array when parsing the file
+
+
+### ``make2d(variable,\*\*kwargs)``
+
+Returns a 2D slice of the given variable
+
+ * variable
+
+ The data array to slice
+
+ * ignoreNaNs (optional)
+
+ Ignore NaNs when doing arithmetic operations (default=True)
+
+ * lat (optional)
+
+ type(int): slice the array at this latitude
+ "sum": Take the meridional sum
+ "mean": Take the meridional mean
+
+ * lon (optional)
+
+ type(int): slice the array at this longitude
+ "sum" Take the zonal sum
+ "mean": Take the zonal mean
+
+ * lev (optional)
+
+ type(int): slice the array at this vertical level
+ "sum" Take the column sum
+ "mean": Take the column mean
+
+ * time (optional)
+
+ type(int): Take the snapshot of the array at this time
+ None (default): Take the time-average of the data
+
+
+### ``spatialmath(variable,\*\*kwargs)``
+
+Returns the area-weighted average or sum of the given variable
+
+ * variable
+
+ Either the name of the variable to use, or the data array itself.
+ If the file keyword is used, this should be the variable name. If
+ not, then the lat and lon arrays must be provided.
+
+ * file (optional)
+
+ The name of the file from which to extract the data
+
+ * lat (optional)
+
+ The latitude array to use (ignored if file keyword is used)
+
+ * lon (optional)
+
+ The longitude array to use (ignored if file keyword is used)
+
+ * lev (optional)
+
+ The level slice to use (see make2d() keyword options)
+
+ * time (optional)
+
+ type(int): Use the snapshot of the variable at this time
+ None (default): Use the time-average of the variable
+
+ * mean (optional)
+
+ If True (default), the global mean will be calculated. If False,
+ only the global sum will be returned.
+
+ * radius (optional)
+
+ The physical radius of the sphere with which to scale the sum
+ (if not computing the mean)
+
+
+### ``wrap2d(variable)``
+
+Add a longitude column to a 2D lat-lon array, and fill it with the first column
+
+
+### ``pcolormesh(variable,\*\*kwargs)``
+
+Create and return a pcolormesh object showing variable. ``\*\*kwargs`` can include all
+normal pcolormesh keyword arguments, and if the 'projection' keyword argument is
+specified, ``\*\*kwargs`` can also contain any Basemap arguments.
+
+gcmtools-specific arguments:
+
+ * invertx
+
+ Invert the x-axis. This is analogous to plt.gca().invert_xaxis()
+
+ * inverty
+
+ Invert the y-axis. This is analogous to plt.gca().invert_yaxis()
+
+ * symmetric
+
+ If True, compute a colormap normalization which is symmetric about zero.
+ If not None and equal to a number, compute a colormap normalization
+ symmetric about that number. Useful for divergent colormaps.
+
+Example:
+
+``pcolormesh(temperature,x=lons,y=lats,projection='moll',lon_0=0,cmap='RdBu_r',symmetric=273.15)``
+
+### ``hadley(filename,\*\*kwargs)``
+
+Compute the streamfunction, and plot the zonal mean as a function of latitude and pressure. Optionally overplot zonal wind contours.
+
+ * filename
+
+ File from which to extract the streamfunction.
+
+ * contours (optional)
+
+ If True, compute the mean zonal wind and overplot it as a series of labeled contours.
+
+ * ylog (optional)
+
+ If True, use a logarithmic scale on the y-axis (corresponding to being linear in altitude).
+
+
+
+
+
+
+%prep
+%autosetup -n gcmtools-0.5.8
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-gcmtools -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.8-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..ae3c37e
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+c96eb276331ada58f9d858379ed36203 gcmtools-0.5.8.tar.gz