1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
|
%global _empty_manifest_terminate_build 0
Name: python-gcmtools
Version: 0.5.8
Release: 1
Summary: GCM Output Analysis Tools
License: GNU General Public License
URL: https://github.com/alphaparrot/gcmtools
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f8/a8/374cfc0853b446c5786781c30859234b7a28fdc0474948842d4f903ec204/gcmtools-0.5.8.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-netCDF4
Requires: python3-matplotlib
Requires: python3-scipy
%description
# gcmtools
By Adiv Paradise
_DEPENDENCIES: matplotlib, numpy, basemap, python-netcdf4_
_OPTIONAL (for interactive plots): nodejs, jupyter-widgets, jupyter-matplotlib_
This is a collection of custom functions, wrappers, and other tools to make analyzing
output from a gcm just slightly easier. Mostly it functions as a wrapper for matplotlib
and basemap, but it includes useful things like a function for area-weighted math and a
function for computing the streamfunction and plotting the Hadley cells.
## Installation
You can either download and build/use from this repository, or you can use pip:
``pip install gcmtools``
## Usage
### ``parse(filename,variable,\*\*kwargs)``
Returns the data contained in variable, along with the latitude and longitude arrays.
* filename
Specifies the name of the netCDF4 file to open
* variable
Specifies the variable name to use
* lat (optional)
What name to use for the latitude array when parsing the file
* lon (optional)
What name to use for the longitude array when parsing the file
### ``make2d(variable,\*\*kwargs)``
Returns a 2D slice of the given variable
* variable
The data array to slice
* ignoreNaNs (optional)
Ignore NaNs when doing arithmetic operations (default=True)
* lat (optional)
type(int): slice the array at this latitude
"sum": Take the meridional sum
"mean": Take the meridional mean
* lon (optional)
type(int): slice the array at this longitude
"sum" Take the zonal sum
"mean": Take the zonal mean
* lev (optional)
type(int): slice the array at this vertical level
"sum" Take the column sum
"mean": Take the column mean
* time (optional)
type(int): Take the snapshot of the array at this time
None (default): Take the time-average of the data
### ``spatialmath(variable,\*\*kwargs)``
Returns the area-weighted average or sum of the given variable
* variable
Either the name of the variable to use, or the data array itself.
If the file keyword is used, this should be the variable name. If
not, then the lat and lon arrays must be provided.
* file (optional)
The name of the file from which to extract the data
* lat (optional)
The latitude array to use (ignored if file keyword is used)
* lon (optional)
The longitude array to use (ignored if file keyword is used)
* lev (optional)
The level slice to use (see make2d() keyword options)
* time (optional)
type(int): Use the snapshot of the variable at this time
None (default): Use the time-average of the variable
* mean (optional)
If True (default), the global mean will be calculated. If False,
only the global sum will be returned.
* radius (optional)
The physical radius of the sphere with which to scale the sum
(if not computing the mean)
### ``wrap2d(variable)``
Add a longitude column to a 2D lat-lon array, and fill it with the first column
### ``pcolormesh(variable,\*\*kwargs)``
Create and return a pcolormesh object showing variable. ``\*\*kwargs`` can include all
normal pcolormesh keyword arguments, and if the 'projection' keyword argument is
specified, ``\*\*kwargs`` can also contain any Basemap arguments.
gcmtools-specific arguments:
* invertx
Invert the x-axis. This is analogous to plt.gca().invert_xaxis()
* inverty
Invert the y-axis. This is analogous to plt.gca().invert_yaxis()
* symmetric
If True, compute a colormap normalization which is symmetric about zero.
If not None and equal to a number, compute a colormap normalization
symmetric about that number. Useful for divergent colormaps.
Example:
``pcolormesh(temperature,x=lons,y=lats,projection='moll',lon_0=0,cmap='RdBu_r',symmetric=273.15)``
### ``hadley(filename,\*\*kwargs)``
Compute the streamfunction, and plot the zonal mean as a function of latitude and pressure. Optionally overplot zonal wind contours.
* filename
File from which to extract the streamfunction.
* contours (optional)
If True, compute the mean zonal wind and overplot it as a series of labeled contours.
* ylog (optional)
If True, use a logarithmic scale on the y-axis (corresponding to being linear in altitude).
%package -n python3-gcmtools
Summary: GCM Output Analysis Tools
Provides: python-gcmtools
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-gcmtools
# gcmtools
By Adiv Paradise
_DEPENDENCIES: matplotlib, numpy, basemap, python-netcdf4_
_OPTIONAL (for interactive plots): nodejs, jupyter-widgets, jupyter-matplotlib_
This is a collection of custom functions, wrappers, and other tools to make analyzing
output from a gcm just slightly easier. Mostly it functions as a wrapper for matplotlib
and basemap, but it includes useful things like a function for area-weighted math and a
function for computing the streamfunction and plotting the Hadley cells.
## Installation
You can either download and build/use from this repository, or you can use pip:
``pip install gcmtools``
## Usage
### ``parse(filename,variable,\*\*kwargs)``
Returns the data contained in variable, along with the latitude and longitude arrays.
* filename
Specifies the name of the netCDF4 file to open
* variable
Specifies the variable name to use
* lat (optional)
What name to use for the latitude array when parsing the file
* lon (optional)
What name to use for the longitude array when parsing the file
### ``make2d(variable,\*\*kwargs)``
Returns a 2D slice of the given variable
* variable
The data array to slice
* ignoreNaNs (optional)
Ignore NaNs when doing arithmetic operations (default=True)
* lat (optional)
type(int): slice the array at this latitude
"sum": Take the meridional sum
"mean": Take the meridional mean
* lon (optional)
type(int): slice the array at this longitude
"sum" Take the zonal sum
"mean": Take the zonal mean
* lev (optional)
type(int): slice the array at this vertical level
"sum" Take the column sum
"mean": Take the column mean
* time (optional)
type(int): Take the snapshot of the array at this time
None (default): Take the time-average of the data
### ``spatialmath(variable,\*\*kwargs)``
Returns the area-weighted average or sum of the given variable
* variable
Either the name of the variable to use, or the data array itself.
If the file keyword is used, this should be the variable name. If
not, then the lat and lon arrays must be provided.
* file (optional)
The name of the file from which to extract the data
* lat (optional)
The latitude array to use (ignored if file keyword is used)
* lon (optional)
The longitude array to use (ignored if file keyword is used)
* lev (optional)
The level slice to use (see make2d() keyword options)
* time (optional)
type(int): Use the snapshot of the variable at this time
None (default): Use the time-average of the variable
* mean (optional)
If True (default), the global mean will be calculated. If False,
only the global sum will be returned.
* radius (optional)
The physical radius of the sphere with which to scale the sum
(if not computing the mean)
### ``wrap2d(variable)``
Add a longitude column to a 2D lat-lon array, and fill it with the first column
### ``pcolormesh(variable,\*\*kwargs)``
Create and return a pcolormesh object showing variable. ``\*\*kwargs`` can include all
normal pcolormesh keyword arguments, and if the 'projection' keyword argument is
specified, ``\*\*kwargs`` can also contain any Basemap arguments.
gcmtools-specific arguments:
* invertx
Invert the x-axis. This is analogous to plt.gca().invert_xaxis()
* inverty
Invert the y-axis. This is analogous to plt.gca().invert_yaxis()
* symmetric
If True, compute a colormap normalization which is symmetric about zero.
If not None and equal to a number, compute a colormap normalization
symmetric about that number. Useful for divergent colormaps.
Example:
``pcolormesh(temperature,x=lons,y=lats,projection='moll',lon_0=0,cmap='RdBu_r',symmetric=273.15)``
### ``hadley(filename,\*\*kwargs)``
Compute the streamfunction, and plot the zonal mean as a function of latitude and pressure. Optionally overplot zonal wind contours.
* filename
File from which to extract the streamfunction.
* contours (optional)
If True, compute the mean zonal wind and overplot it as a series of labeled contours.
* ylog (optional)
If True, use a logarithmic scale on the y-axis (corresponding to being linear in altitude).
%package help
Summary: Development documents and examples for gcmtools
Provides: python3-gcmtools-doc
%description help
# gcmtools
By Adiv Paradise
_DEPENDENCIES: matplotlib, numpy, basemap, python-netcdf4_
_OPTIONAL (for interactive plots): nodejs, jupyter-widgets, jupyter-matplotlib_
This is a collection of custom functions, wrappers, and other tools to make analyzing
output from a gcm just slightly easier. Mostly it functions as a wrapper for matplotlib
and basemap, but it includes useful things like a function for area-weighted math and a
function for computing the streamfunction and plotting the Hadley cells.
## Installation
You can either download and build/use from this repository, or you can use pip:
``pip install gcmtools``
## Usage
### ``parse(filename,variable,\*\*kwargs)``
Returns the data contained in variable, along with the latitude and longitude arrays.
* filename
Specifies the name of the netCDF4 file to open
* variable
Specifies the variable name to use
* lat (optional)
What name to use for the latitude array when parsing the file
* lon (optional)
What name to use for the longitude array when parsing the file
### ``make2d(variable,\*\*kwargs)``
Returns a 2D slice of the given variable
* variable
The data array to slice
* ignoreNaNs (optional)
Ignore NaNs when doing arithmetic operations (default=True)
* lat (optional)
type(int): slice the array at this latitude
"sum": Take the meridional sum
"mean": Take the meridional mean
* lon (optional)
type(int): slice the array at this longitude
"sum" Take the zonal sum
"mean": Take the zonal mean
* lev (optional)
type(int): slice the array at this vertical level
"sum" Take the column sum
"mean": Take the column mean
* time (optional)
type(int): Take the snapshot of the array at this time
None (default): Take the time-average of the data
### ``spatialmath(variable,\*\*kwargs)``
Returns the area-weighted average or sum of the given variable
* variable
Either the name of the variable to use, or the data array itself.
If the file keyword is used, this should be the variable name. If
not, then the lat and lon arrays must be provided.
* file (optional)
The name of the file from which to extract the data
* lat (optional)
The latitude array to use (ignored if file keyword is used)
* lon (optional)
The longitude array to use (ignored if file keyword is used)
* lev (optional)
The level slice to use (see make2d() keyword options)
* time (optional)
type(int): Use the snapshot of the variable at this time
None (default): Use the time-average of the variable
* mean (optional)
If True (default), the global mean will be calculated. If False,
only the global sum will be returned.
* radius (optional)
The physical radius of the sphere with which to scale the sum
(if not computing the mean)
### ``wrap2d(variable)``
Add a longitude column to a 2D lat-lon array, and fill it with the first column
### ``pcolormesh(variable,\*\*kwargs)``
Create and return a pcolormesh object showing variable. ``\*\*kwargs`` can include all
normal pcolormesh keyword arguments, and if the 'projection' keyword argument is
specified, ``\*\*kwargs`` can also contain any Basemap arguments.
gcmtools-specific arguments:
* invertx
Invert the x-axis. This is analogous to plt.gca().invert_xaxis()
* inverty
Invert the y-axis. This is analogous to plt.gca().invert_yaxis()
* symmetric
If True, compute a colormap normalization which is symmetric about zero.
If not None and equal to a number, compute a colormap normalization
symmetric about that number. Useful for divergent colormaps.
Example:
``pcolormesh(temperature,x=lons,y=lats,projection='moll',lon_0=0,cmap='RdBu_r',symmetric=273.15)``
### ``hadley(filename,\*\*kwargs)``
Compute the streamfunction, and plot the zonal mean as a function of latitude and pressure. Optionally overplot zonal wind contours.
* filename
File from which to extract the streamfunction.
* contours (optional)
If True, compute the mean zonal wind and overplot it as a series of labeled contours.
* ylog (optional)
If True, use a logarithmic scale on the y-axis (corresponding to being linear in altitude).
%prep
%autosetup -n gcmtools-0.5.8
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-gcmtools -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.8-1
- Package Spec generated
|