diff options
author | CoprDistGit <infra@openeuler.org> | 2023-04-11 09:55:12 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-04-11 09:55:12 +0000 |
commit | faf3472095d488f031c3a1759f5d99e622a5a155 (patch) | |
tree | 11a40b93d6901b4cd5cba4e5866533437cbc7da2 | |
parent | c01e988cb399529006747a63c59dac61190f6698 (diff) |
automatic import of python-gekko
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-gekko.spec | 160 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 162 insertions, 0 deletions
@@ -0,0 +1 @@ +/gekko-1.0.6.tar.gz diff --git a/python-gekko.spec b/python-gekko.spec new file mode 100644 index 0000000..9a46e47 --- /dev/null +++ b/python-gekko.spec @@ -0,0 +1,160 @@ +%global _empty_manifest_terminate_build 0 +Name: python-gekko +Version: 1.0.6 +Release: 1 +Summary: Machine learning and optimization for dynamic systems +License: MIT +URL: https://github.com/BYU-PRISM/GEKKO +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f9/9e/e34c5eb9943a1e8b089577cbd924a46f51164c0af64fd15e815bd468ca51/gekko-1.0.6.tar.gz +BuildArch: noarch + +Requires: python3-numpy + +%description +GEKKO is a python package for machine learning and optimization, specializing in +dynamic optimization of differential algebraic equations (DAE) systems. It is coupled +with large-scale solvers APOPT and IPOPT for linear, quadratic, nonlinear, and mixed integer +programming. Capabilities include machine learning, discrete or continuous state space +models, simulation, estimation, and control. +Gekko models consist of equations and variables that create a symbolic representation of the +problem for a single data point or single time instance. Solution modes then create the full model +over all data points or time horizon. Gekko supports a wide range of problem types, including: +- Linear Programming (LP) +- Quadratic Programming (QP) +- Nonlinear Programming (NLP) +- Mixed-Integer Linear Programming (MILP) +- Mixed-Integer Quadratic Programming (MIQP) +- Mixed-Integer Nonlinear Programming (MINLP) +- Differential Algebraic Equations (DAEs) +- Mathematical Programming with Complementarity Constraints (MPCCs) +- Data regression / Machine learning +- Moving Horizon Estimation (MHE) +- Model Predictive Control (MPC) +- Real-Time Optimization (RTO) +- Sequential or Simultaneous DAE solution +Gekko compiles the model into byte-code and provides sparse derivatives to the solver with +automatic differentiation. Gekko includes data cleansing functions and standard tag actions for industrially +hardened control and optimization on Windows, Linux, MacOS, ARM processors, or any other platform that +runs Python. Options are available for local, edge, and cloud solutions to manage memory or compute +resources. +- [Gekko Homepage](https://machinelearning.byu.edu) +- [Gekko Documentation](https://gekko.readthedocs.io/en/latest/) +- [Gekko Examples](https://apmonitor.com/wiki/index.php/Main/GekkoPythonOptimization) +- [Get Gekko Help on Stack Overflow](https://stackoverflow.com/questions/tagged/gekko) + +%package -n python3-gekko +Summary: Machine learning and optimization for dynamic systems +Provides: python-gekko +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-gekko +GEKKO is a python package for machine learning and optimization, specializing in +dynamic optimization of differential algebraic equations (DAE) systems. It is coupled +with large-scale solvers APOPT and IPOPT for linear, quadratic, nonlinear, and mixed integer +programming. Capabilities include machine learning, discrete or continuous state space +models, simulation, estimation, and control. +Gekko models consist of equations and variables that create a symbolic representation of the +problem for a single data point or single time instance. Solution modes then create the full model +over all data points or time horizon. Gekko supports a wide range of problem types, including: +- Linear Programming (LP) +- Quadratic Programming (QP) +- Nonlinear Programming (NLP) +- Mixed-Integer Linear Programming (MILP) +- Mixed-Integer Quadratic Programming (MIQP) +- Mixed-Integer Nonlinear Programming (MINLP) +- Differential Algebraic Equations (DAEs) +- Mathematical Programming with Complementarity Constraints (MPCCs) +- Data regression / Machine learning +- Moving Horizon Estimation (MHE) +- Model Predictive Control (MPC) +- Real-Time Optimization (RTO) +- Sequential or Simultaneous DAE solution +Gekko compiles the model into byte-code and provides sparse derivatives to the solver with +automatic differentiation. Gekko includes data cleansing functions and standard tag actions for industrially +hardened control and optimization on Windows, Linux, MacOS, ARM processors, or any other platform that +runs Python. Options are available for local, edge, and cloud solutions to manage memory or compute +resources. +- [Gekko Homepage](https://machinelearning.byu.edu) +- [Gekko Documentation](https://gekko.readthedocs.io/en/latest/) +- [Gekko Examples](https://apmonitor.com/wiki/index.php/Main/GekkoPythonOptimization) +- [Get Gekko Help on Stack Overflow](https://stackoverflow.com/questions/tagged/gekko) + +%package help +Summary: Development documents and examples for gekko +Provides: python3-gekko-doc +%description help +GEKKO is a python package for machine learning and optimization, specializing in +dynamic optimization of differential algebraic equations (DAE) systems. It is coupled +with large-scale solvers APOPT and IPOPT for linear, quadratic, nonlinear, and mixed integer +programming. Capabilities include machine learning, discrete or continuous state space +models, simulation, estimation, and control. +Gekko models consist of equations and variables that create a symbolic representation of the +problem for a single data point or single time instance. Solution modes then create the full model +over all data points or time horizon. Gekko supports a wide range of problem types, including: +- Linear Programming (LP) +- Quadratic Programming (QP) +- Nonlinear Programming (NLP) +- Mixed-Integer Linear Programming (MILP) +- Mixed-Integer Quadratic Programming (MIQP) +- Mixed-Integer Nonlinear Programming (MINLP) +- Differential Algebraic Equations (DAEs) +- Mathematical Programming with Complementarity Constraints (MPCCs) +- Data regression / Machine learning +- Moving Horizon Estimation (MHE) +- Model Predictive Control (MPC) +- Real-Time Optimization (RTO) +- Sequential or Simultaneous DAE solution +Gekko compiles the model into byte-code and provides sparse derivatives to the solver with +automatic differentiation. Gekko includes data cleansing functions and standard tag actions for industrially +hardened control and optimization on Windows, Linux, MacOS, ARM processors, or any other platform that +runs Python. Options are available for local, edge, and cloud solutions to manage memory or compute +resources. +- [Gekko Homepage](https://machinelearning.byu.edu) +- [Gekko Documentation](https://gekko.readthedocs.io/en/latest/) +- [Gekko Examples](https://apmonitor.com/wiki/index.php/Main/GekkoPythonOptimization) +- [Get Gekko Help on Stack Overflow](https://stackoverflow.com/questions/tagged/gekko) + +%prep +%autosetup -n gekko-1.0.6 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-gekko -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.6-1 +- Package Spec generated @@ -0,0 +1 @@ +7f1df29cb056202c39e6e85f943e8196 gekko-1.0.6.tar.gz |