1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
|
%global _empty_manifest_terminate_build 0
Name: python-geobeam
Version: 1.1.2
Release: 1
Summary: geobeam adds GIS capabilities to your Apache Beam pipelines
License: Apache Software License
URL: https://pypi.org/project/geobeam/
Source0: https://mirrors.aliyun.com/pypi/web/packages/e7/fe/dd14332f3e5e5cfef654d9f21e791fa11bcf890df431f757b70cc9dfa965/geobeam-1.1.2.tar.gz
BuildArch: noarch
Requires: python3-apache-beam[gcp]
Requires: python3-fiona
Requires: python3-shapely
Requires: python3-rasterio
Requires: python3-google-cloud-storage
Requires: python3-esridump
%description
geobeam adds GIS capabilities to your Apache Beam pipelines.
## What does geobeam do?
`geobeam` enables you to ingest and analyze massive amounts of geospatial data in parallel using [Dataflow](https://cloud.google.com/dataflow).
geobeam provides a set of [FileBasedSource](https://beam.apache.org/releases/pydoc/2.41.0/apache_beam.io.filebasedsource.html)
classes that make it easy to read, process, and write geospatial data, and provides a set of helpful
Apache Beam transforms and utilities that make it easier to process GIS data in your Dataflow pipelines.
See the [Full Documentation](https://storage.googleapis.com/geobeam/docs/all.pdf) for complete API specification.
### Requirements
- Apache Beam 2.46+
- Python 3.8+
> Note: Make sure the Python version used to run the pipeline matches the version in the built container.
### Supported input types
| **File format** | **Data type** | **Geobeam class** |
|:----------------|:--------------|:-------------------|
| `tiff` | raster | `RasterBlockSource` and `RasterPolygonSource`
| `shp` | vector | `ShapefileSource`
| `gdb` | vector | `GeodatabaseSource`
| `json` | vector | `GeoJSONSource`
| URL | vector | `ESRIServerSource`
### Included libraries
`geobeam` includes several python modules that allow you to perform a wide variety of operations and analyses on your geospatial data.
| **Module** | **Version** | **Description** |
|:----------------|:------------|:----------------|
| [gdal](https://pypi.org/project/GDAL/) | 3.5.2 | python bindings for GDAL
| [rasterio](https://pypi.org/project/rasterio/) | 1.3.2 | reads and writes geospatial raster data
| [fiona](https://pypi.org/project/Fiona/) | 1.8.21 | reads and writes geospatial vector data
| [shapely](https://pypi.org/project/Shapely/) | 1.8.4 | manipulation and analysis of geometric objects in the cartesian plane
| [esridump](https://pypi.org/project/esridump/) | 1.11.0 | read layer from ESRI server
## How to Use
### 1. Install the module
```
pip install geobeam
```
### 2. Write your pipeline
Write a normal Apache Beam pipeline using one of `geobeam`s file sources.
See [`geobeam/examples`](https://github.com/GoogleCloudPlatform/dataflow-geobeam/tree/main/geobeam/examples) for inspiration.
### 3. Run
#### Run locally
```
python -m geobeam.examples.geotiff_dem \
--gcs_url gs://geobeam/examples/dem-clipped-test.tif \
--dataset examples \
--table dem \
--band_column elev \
--runner DirectRunner \
--temp_location <temp gs://> \
--project <project_id>
```
> Note: Some of the provided examples may take a very long time to run locally...
#### Run in Dataflow
##### Write a Dockerfile
This will run in Dataflow as a [custom container](https://cloud.google.com/dataflow/docs/guides/using-custom-containers) based on the [`dataflow-geobeam/base`](Dockerfile) image.
It is recommended that you publish your own container based on the Dockerfile in this repository and store it in your project's GCR registry.
```dockerfile
FROM gcr.io/dataflow-geobeam/base
RUN pip install geobeam
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
```
```bash
# build locally with docker
docker build -t gcr.io/<project_id>/geobeam
docker push gcr.io/<project_id>/geobeam
# or build with Cloud Build
gcloud builds submit --timeout 3600s --worker_machine_type n1-highcpu-8
```
#### Start the Dataflow job
```
# run the geotiff_soilgrid example in dataflow
python -m geobeam.examples.geotiff_soilgrid \
--gcs_url gs://geobeam/examples/AWCh3_M_sl1_250m_ll.tif \
--dataset examples \
--table soilgrid \
--band_column h3 \
--runner DataflowRunner \
--sdk_container_image gcr.io/dataflow-geobeam/base \
--temp_location <temp bucket> \
--service_account_email <service account> \
--region us-central1 \
--max_num_workers 2 \
--worker_machine_type c2-standard-30 \
```
## Examples
#### Read Raster as Blocks
```py
def run(options):
from geobeam.io import RasterBlockSource
from geobeam.fn import format_rasterblock_record
with beam.Pipeline(options) as p:
(p | 'ReadRaster' >> beam.io.Read(RasterBlockSource(gcs_url))
| 'FormatRecord' >> beam.Map(format_rasterblock_record)
| 'WriteToBigquery' >> beam.io.WriteToBigQuery('geo.dem'))
```
#### Validate and Simplify Shapefile
```py
def run(options):
from geobeam.io import ShapefileSource
from geobeam.fn import make_valid, filter_invalid, format_record
with beam.Pipeline(options) as p:
(p | 'ReadShapefile' >> beam.io.Read(ShapefileSource(gcs_url))
| 'Validate' >> beam.Map(make_valid)
| 'FilterInvalid' >> beam.Filter(filter_invalid)
| 'FormatRecord' >> beam.Map(format_record)
| 'WriteToBigquery' >> beam.io.WriteToBigQuery('geo.parcel'))
```
See `geobeam/examples/` for complete examples.
A number of example pipelines are available in the `geobeam/examples/` folder.
To run them in your Google Cloud project, run the included [terraform](https://www.terraform.io) file to set up the Bigquery dataset and tables used by the example pipelines.
Open up Bigquery GeoViz to visualize your data.
### Shapefile Example
The National Flood Hazard Layer loaded from a shapefile. Example pipeline at [`geobeam/examples/shapefile_nfhl.py`](https://github.com/GoogleCloudPlatform/dataflow-geobeam/blob/main/geobeam/examples/shapefile_nfhl.py)

### Raster Example
The Digital Elevation Model is a high-resolution model of elevation measurements at 1-meter resolution. (Values converted to centimeters). Example pipeline: [`geobeam/examples/geotiff_dem.py`](https://github.com/GoogleCloudPlatform/dataflow-geobeam/blob/main/geobeam/examples/geotiff_dem.py).

## Included Transforms
The `geobeam.fn` module includes several [Beam Transforms](https://beam.apache.org/documentation/programming-guide/#transforms) that you can use in your pipelines.
| **Module** | **Description**
|:----------------|:------------|
| `geobeam.fn.make_valid` | Attempt to make all geometries valid.
| `geobeam.fn.filter_invalid` | Filter out invalid geometries that cannot be made valid
| `geobeam.fn.format_record` | Format the (props, geom) tuple received from a vector source into a `dict` that can be inserted into the destination table
| `geobeam.fn.format_rasterblock_record` | Format the output record for blocks read from `RasterBlockSource`
| `geobeam.fn.format_rasterpolygon_record` | Format the output record for blocks read from `RasterPolygonSource`
## Execution parameters
Each FileSource accepts several parameters that you can use to configure how your data is loaded and processed.
These can be parsed as pipeline arguments and passed into the respective FileSources as seen in the examples pipelines.
| **Parameter** | **Input type** | **Description** | **Default** | **Required?**
|:-------------------|:---------------|:----------------|:------------|---------------|
| `skip_reproject` | All | True to skip reprojection during read | `False` | No
| `in_epsg` | All | An [EPSG integer](https://en.wikipedia.org/wiki/EPSG_Geodetic_Parameter_Dataset) to override the input source CRS to reproject from | | No
| `in_proj` | All | A [PROJ string](https://proj.org/usage/quickstart.html) to override the input source CRS | | No
| `band_number` | Raster | The raster band to read from | `1` | No
| `include_nodata` | Raster | True to include `nodata` values | `False` | No
| `return_block_transform` | Raster | True to include rasterio `transform` object with each block to use with `geobeam.fn.format_rasterpixel_record` | `False` | No
| `layer_name` | Vector | Name of layer to read | | Yes, for shapefiles
| `gdb_name` | Vector | Name of geodatabase directory in a gdb zip archive | | Yes, for GDB files
## License
This is not an officially supported Google product, though support will be provided on a best-effort basis.
```
Copyright 2023 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
```
%package -n python3-geobeam
Summary: geobeam adds GIS capabilities to your Apache Beam pipelines
Provides: python-geobeam
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-geobeam
geobeam adds GIS capabilities to your Apache Beam pipelines.
## What does geobeam do?
`geobeam` enables you to ingest and analyze massive amounts of geospatial data in parallel using [Dataflow](https://cloud.google.com/dataflow).
geobeam provides a set of [FileBasedSource](https://beam.apache.org/releases/pydoc/2.41.0/apache_beam.io.filebasedsource.html)
classes that make it easy to read, process, and write geospatial data, and provides a set of helpful
Apache Beam transforms and utilities that make it easier to process GIS data in your Dataflow pipelines.
See the [Full Documentation](https://storage.googleapis.com/geobeam/docs/all.pdf) for complete API specification.
### Requirements
- Apache Beam 2.46+
- Python 3.8+
> Note: Make sure the Python version used to run the pipeline matches the version in the built container.
### Supported input types
| **File format** | **Data type** | **Geobeam class** |
|:----------------|:--------------|:-------------------|
| `tiff` | raster | `RasterBlockSource` and `RasterPolygonSource`
| `shp` | vector | `ShapefileSource`
| `gdb` | vector | `GeodatabaseSource`
| `json` | vector | `GeoJSONSource`
| URL | vector | `ESRIServerSource`
### Included libraries
`geobeam` includes several python modules that allow you to perform a wide variety of operations and analyses on your geospatial data.
| **Module** | **Version** | **Description** |
|:----------------|:------------|:----------------|
| [gdal](https://pypi.org/project/GDAL/) | 3.5.2 | python bindings for GDAL
| [rasterio](https://pypi.org/project/rasterio/) | 1.3.2 | reads and writes geospatial raster data
| [fiona](https://pypi.org/project/Fiona/) | 1.8.21 | reads and writes geospatial vector data
| [shapely](https://pypi.org/project/Shapely/) | 1.8.4 | manipulation and analysis of geometric objects in the cartesian plane
| [esridump](https://pypi.org/project/esridump/) | 1.11.0 | read layer from ESRI server
## How to Use
### 1. Install the module
```
pip install geobeam
```
### 2. Write your pipeline
Write a normal Apache Beam pipeline using one of `geobeam`s file sources.
See [`geobeam/examples`](https://github.com/GoogleCloudPlatform/dataflow-geobeam/tree/main/geobeam/examples) for inspiration.
### 3. Run
#### Run locally
```
python -m geobeam.examples.geotiff_dem \
--gcs_url gs://geobeam/examples/dem-clipped-test.tif \
--dataset examples \
--table dem \
--band_column elev \
--runner DirectRunner \
--temp_location <temp gs://> \
--project <project_id>
```
> Note: Some of the provided examples may take a very long time to run locally...
#### Run in Dataflow
##### Write a Dockerfile
This will run in Dataflow as a [custom container](https://cloud.google.com/dataflow/docs/guides/using-custom-containers) based on the [`dataflow-geobeam/base`](Dockerfile) image.
It is recommended that you publish your own container based on the Dockerfile in this repository and store it in your project's GCR registry.
```dockerfile
FROM gcr.io/dataflow-geobeam/base
RUN pip install geobeam
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
```
```bash
# build locally with docker
docker build -t gcr.io/<project_id>/geobeam
docker push gcr.io/<project_id>/geobeam
# or build with Cloud Build
gcloud builds submit --timeout 3600s --worker_machine_type n1-highcpu-8
```
#### Start the Dataflow job
```
# run the geotiff_soilgrid example in dataflow
python -m geobeam.examples.geotiff_soilgrid \
--gcs_url gs://geobeam/examples/AWCh3_M_sl1_250m_ll.tif \
--dataset examples \
--table soilgrid \
--band_column h3 \
--runner DataflowRunner \
--sdk_container_image gcr.io/dataflow-geobeam/base \
--temp_location <temp bucket> \
--service_account_email <service account> \
--region us-central1 \
--max_num_workers 2 \
--worker_machine_type c2-standard-30 \
```
## Examples
#### Read Raster as Blocks
```py
def run(options):
from geobeam.io import RasterBlockSource
from geobeam.fn import format_rasterblock_record
with beam.Pipeline(options) as p:
(p | 'ReadRaster' >> beam.io.Read(RasterBlockSource(gcs_url))
| 'FormatRecord' >> beam.Map(format_rasterblock_record)
| 'WriteToBigquery' >> beam.io.WriteToBigQuery('geo.dem'))
```
#### Validate and Simplify Shapefile
```py
def run(options):
from geobeam.io import ShapefileSource
from geobeam.fn import make_valid, filter_invalid, format_record
with beam.Pipeline(options) as p:
(p | 'ReadShapefile' >> beam.io.Read(ShapefileSource(gcs_url))
| 'Validate' >> beam.Map(make_valid)
| 'FilterInvalid' >> beam.Filter(filter_invalid)
| 'FormatRecord' >> beam.Map(format_record)
| 'WriteToBigquery' >> beam.io.WriteToBigQuery('geo.parcel'))
```
See `geobeam/examples/` for complete examples.
A number of example pipelines are available in the `geobeam/examples/` folder.
To run them in your Google Cloud project, run the included [terraform](https://www.terraform.io) file to set up the Bigquery dataset and tables used by the example pipelines.
Open up Bigquery GeoViz to visualize your data.
### Shapefile Example
The National Flood Hazard Layer loaded from a shapefile. Example pipeline at [`geobeam/examples/shapefile_nfhl.py`](https://github.com/GoogleCloudPlatform/dataflow-geobeam/blob/main/geobeam/examples/shapefile_nfhl.py)

### Raster Example
The Digital Elevation Model is a high-resolution model of elevation measurements at 1-meter resolution. (Values converted to centimeters). Example pipeline: [`geobeam/examples/geotiff_dem.py`](https://github.com/GoogleCloudPlatform/dataflow-geobeam/blob/main/geobeam/examples/geotiff_dem.py).

## Included Transforms
The `geobeam.fn` module includes several [Beam Transforms](https://beam.apache.org/documentation/programming-guide/#transforms) that you can use in your pipelines.
| **Module** | **Description**
|:----------------|:------------|
| `geobeam.fn.make_valid` | Attempt to make all geometries valid.
| `geobeam.fn.filter_invalid` | Filter out invalid geometries that cannot be made valid
| `geobeam.fn.format_record` | Format the (props, geom) tuple received from a vector source into a `dict` that can be inserted into the destination table
| `geobeam.fn.format_rasterblock_record` | Format the output record for blocks read from `RasterBlockSource`
| `geobeam.fn.format_rasterpolygon_record` | Format the output record for blocks read from `RasterPolygonSource`
## Execution parameters
Each FileSource accepts several parameters that you can use to configure how your data is loaded and processed.
These can be parsed as pipeline arguments and passed into the respective FileSources as seen in the examples pipelines.
| **Parameter** | **Input type** | **Description** | **Default** | **Required?**
|:-------------------|:---------------|:----------------|:------------|---------------|
| `skip_reproject` | All | True to skip reprojection during read | `False` | No
| `in_epsg` | All | An [EPSG integer](https://en.wikipedia.org/wiki/EPSG_Geodetic_Parameter_Dataset) to override the input source CRS to reproject from | | No
| `in_proj` | All | A [PROJ string](https://proj.org/usage/quickstart.html) to override the input source CRS | | No
| `band_number` | Raster | The raster band to read from | `1` | No
| `include_nodata` | Raster | True to include `nodata` values | `False` | No
| `return_block_transform` | Raster | True to include rasterio `transform` object with each block to use with `geobeam.fn.format_rasterpixel_record` | `False` | No
| `layer_name` | Vector | Name of layer to read | | Yes, for shapefiles
| `gdb_name` | Vector | Name of geodatabase directory in a gdb zip archive | | Yes, for GDB files
## License
This is not an officially supported Google product, though support will be provided on a best-effort basis.
```
Copyright 2023 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
```
%package help
Summary: Development documents and examples for geobeam
Provides: python3-geobeam-doc
%description help
geobeam adds GIS capabilities to your Apache Beam pipelines.
## What does geobeam do?
`geobeam` enables you to ingest and analyze massive amounts of geospatial data in parallel using [Dataflow](https://cloud.google.com/dataflow).
geobeam provides a set of [FileBasedSource](https://beam.apache.org/releases/pydoc/2.41.0/apache_beam.io.filebasedsource.html)
classes that make it easy to read, process, and write geospatial data, and provides a set of helpful
Apache Beam transforms and utilities that make it easier to process GIS data in your Dataflow pipelines.
See the [Full Documentation](https://storage.googleapis.com/geobeam/docs/all.pdf) for complete API specification.
### Requirements
- Apache Beam 2.46+
- Python 3.8+
> Note: Make sure the Python version used to run the pipeline matches the version in the built container.
### Supported input types
| **File format** | **Data type** | **Geobeam class** |
|:----------------|:--------------|:-------------------|
| `tiff` | raster | `RasterBlockSource` and `RasterPolygonSource`
| `shp` | vector | `ShapefileSource`
| `gdb` | vector | `GeodatabaseSource`
| `json` | vector | `GeoJSONSource`
| URL | vector | `ESRIServerSource`
### Included libraries
`geobeam` includes several python modules that allow you to perform a wide variety of operations and analyses on your geospatial data.
| **Module** | **Version** | **Description** |
|:----------------|:------------|:----------------|
| [gdal](https://pypi.org/project/GDAL/) | 3.5.2 | python bindings for GDAL
| [rasterio](https://pypi.org/project/rasterio/) | 1.3.2 | reads and writes geospatial raster data
| [fiona](https://pypi.org/project/Fiona/) | 1.8.21 | reads and writes geospatial vector data
| [shapely](https://pypi.org/project/Shapely/) | 1.8.4 | manipulation and analysis of geometric objects in the cartesian plane
| [esridump](https://pypi.org/project/esridump/) | 1.11.0 | read layer from ESRI server
## How to Use
### 1. Install the module
```
pip install geobeam
```
### 2. Write your pipeline
Write a normal Apache Beam pipeline using one of `geobeam`s file sources.
See [`geobeam/examples`](https://github.com/GoogleCloudPlatform/dataflow-geobeam/tree/main/geobeam/examples) for inspiration.
### 3. Run
#### Run locally
```
python -m geobeam.examples.geotiff_dem \
--gcs_url gs://geobeam/examples/dem-clipped-test.tif \
--dataset examples \
--table dem \
--band_column elev \
--runner DirectRunner \
--temp_location <temp gs://> \
--project <project_id>
```
> Note: Some of the provided examples may take a very long time to run locally...
#### Run in Dataflow
##### Write a Dockerfile
This will run in Dataflow as a [custom container](https://cloud.google.com/dataflow/docs/guides/using-custom-containers) based on the [`dataflow-geobeam/base`](Dockerfile) image.
It is recommended that you publish your own container based on the Dockerfile in this repository and store it in your project's GCR registry.
```dockerfile
FROM gcr.io/dataflow-geobeam/base
RUN pip install geobeam
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
```
```bash
# build locally with docker
docker build -t gcr.io/<project_id>/geobeam
docker push gcr.io/<project_id>/geobeam
# or build with Cloud Build
gcloud builds submit --timeout 3600s --worker_machine_type n1-highcpu-8
```
#### Start the Dataflow job
```
# run the geotiff_soilgrid example in dataflow
python -m geobeam.examples.geotiff_soilgrid \
--gcs_url gs://geobeam/examples/AWCh3_M_sl1_250m_ll.tif \
--dataset examples \
--table soilgrid \
--band_column h3 \
--runner DataflowRunner \
--sdk_container_image gcr.io/dataflow-geobeam/base \
--temp_location <temp bucket> \
--service_account_email <service account> \
--region us-central1 \
--max_num_workers 2 \
--worker_machine_type c2-standard-30 \
```
## Examples
#### Read Raster as Blocks
```py
def run(options):
from geobeam.io import RasterBlockSource
from geobeam.fn import format_rasterblock_record
with beam.Pipeline(options) as p:
(p | 'ReadRaster' >> beam.io.Read(RasterBlockSource(gcs_url))
| 'FormatRecord' >> beam.Map(format_rasterblock_record)
| 'WriteToBigquery' >> beam.io.WriteToBigQuery('geo.dem'))
```
#### Validate and Simplify Shapefile
```py
def run(options):
from geobeam.io import ShapefileSource
from geobeam.fn import make_valid, filter_invalid, format_record
with beam.Pipeline(options) as p:
(p | 'ReadShapefile' >> beam.io.Read(ShapefileSource(gcs_url))
| 'Validate' >> beam.Map(make_valid)
| 'FilterInvalid' >> beam.Filter(filter_invalid)
| 'FormatRecord' >> beam.Map(format_record)
| 'WriteToBigquery' >> beam.io.WriteToBigQuery('geo.parcel'))
```
See `geobeam/examples/` for complete examples.
A number of example pipelines are available in the `geobeam/examples/` folder.
To run them in your Google Cloud project, run the included [terraform](https://www.terraform.io) file to set up the Bigquery dataset and tables used by the example pipelines.
Open up Bigquery GeoViz to visualize your data.
### Shapefile Example
The National Flood Hazard Layer loaded from a shapefile. Example pipeline at [`geobeam/examples/shapefile_nfhl.py`](https://github.com/GoogleCloudPlatform/dataflow-geobeam/blob/main/geobeam/examples/shapefile_nfhl.py)

### Raster Example
The Digital Elevation Model is a high-resolution model of elevation measurements at 1-meter resolution. (Values converted to centimeters). Example pipeline: [`geobeam/examples/geotiff_dem.py`](https://github.com/GoogleCloudPlatform/dataflow-geobeam/blob/main/geobeam/examples/geotiff_dem.py).

## Included Transforms
The `geobeam.fn` module includes several [Beam Transforms](https://beam.apache.org/documentation/programming-guide/#transforms) that you can use in your pipelines.
| **Module** | **Description**
|:----------------|:------------|
| `geobeam.fn.make_valid` | Attempt to make all geometries valid.
| `geobeam.fn.filter_invalid` | Filter out invalid geometries that cannot be made valid
| `geobeam.fn.format_record` | Format the (props, geom) tuple received from a vector source into a `dict` that can be inserted into the destination table
| `geobeam.fn.format_rasterblock_record` | Format the output record for blocks read from `RasterBlockSource`
| `geobeam.fn.format_rasterpolygon_record` | Format the output record for blocks read from `RasterPolygonSource`
## Execution parameters
Each FileSource accepts several parameters that you can use to configure how your data is loaded and processed.
These can be parsed as pipeline arguments and passed into the respective FileSources as seen in the examples pipelines.
| **Parameter** | **Input type** | **Description** | **Default** | **Required?**
|:-------------------|:---------------|:----------------|:------------|---------------|
| `skip_reproject` | All | True to skip reprojection during read | `False` | No
| `in_epsg` | All | An [EPSG integer](https://en.wikipedia.org/wiki/EPSG_Geodetic_Parameter_Dataset) to override the input source CRS to reproject from | | No
| `in_proj` | All | A [PROJ string](https://proj.org/usage/quickstart.html) to override the input source CRS | | No
| `band_number` | Raster | The raster band to read from | `1` | No
| `include_nodata` | Raster | True to include `nodata` values | `False` | No
| `return_block_transform` | Raster | True to include rasterio `transform` object with each block to use with `geobeam.fn.format_rasterpixel_record` | `False` | No
| `layer_name` | Vector | Name of layer to read | | Yes, for shapefiles
| `gdb_name` | Vector | Name of geodatabase directory in a gdb zip archive | | Yes, for GDB files
## License
This is not an officially supported Google product, though support will be provided on a best-effort basis.
```
Copyright 2023 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
```
%prep
%autosetup -n geobeam-1.1.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-geobeam -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.2-1
- Package Spec generated
|