1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
%global _empty_manifest_terminate_build 0
Name: python-gglasso
Version: 0.1.9
Release: 1
Summary: Algorithms for Single and Multiple Graphical Lasso problems.
License: MIT
URL: https://github.com/fabian-sp/GGLasso
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1f/b9/5ac04eaf3cd77d04acf5c00b832cb5787208ee744697159e5afdff202d47/gglasso-0.1.9.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-scikit-learn
Requires: python3-numba
Requires: python3-pandas
Requires: python3-matplotlib
Requires: python3-seaborn
Requires: python3-networkx
Requires: python3-regain
Requires: python3-decorator
Requires: python3-sphinx
Requires: python3-sphinx-gallery
Requires: python3-sphinx-rtd-theme
Requires: python3-pytest
Requires: python3-pytest-cov
%description
# GGLasso
[](https://pypi.python.org/pypi/gglasso/)
[](https://pypi.python.org/pypi/gglasso/)
[](https://www.python.org/)
[](http://gglasso.readthedocs.io/?badge=latest)
[](https://doi.org/10.21105/joss.03865)
[](https://arxiv.org/abs/2110.10521)
This package contains algorithms for solving General Graphical Lasso (GGLasso) problems, including single, multiple, as well as latent
Graphical Lasso problems. <br>
[Docs](https://gglasso.readthedocs.io/en/latest/) | [Examples](https://gglasso.readthedocs.io/en/latest/auto_examples/index.html)
## Getting started
### Install via pip
The package is available on pip and can be installed with
pip install gglasso
### Install from source
Alternatively, you can install the package from source using the following commands:
git clone https://github.com/fabian-sp/GGLasso.git
pip install -r requirements.txt
python setup.py
Test your installation with
pytest gglasso/ -v
### Advanced options
When installing from source, you can also install dependencies with `conda` via the command
$ while read requirement; do conda install --yes $requirement || pip install $requirement; done < requirements.txt
If you wish to install `gglasso` in developer mode, i.e. not having to reinstall `gglasso` everytime the source code changes (either by remote or local changes), run
python setup.py clean --all develop clean --all
## The `glasso_problem` class
`GGLasso` can solve multiple problem forumulations, e.g. single and multiple Graphical Lasso problems as well as with and without latent factors. Therefore, the main entry point for the user is the `glasso_problem` class which chooses automatically the correct solver and model selection functionality. See [our documentation](https://gglasso.readthedocs.io/en/latest/problem-object.html) for all the details.
## Algorithms
`GGLasso` contains algorithms for Single and Multiple Graphical Lasso problems. Moreover, it allows to model latent variables (Latent variable Graphical Lasso) in order to estimate a precision matrix of type **sparse - low rank**. The following algorithms are contained in the package.
<br>
1) ADMM for Single Graphical Lasso<br>
2) ADMM for Group and Fused Graphical Lasso<br>
The algorithm was proposed in [2] and [3]. To use this, import `ADMM_MGL` from `gglasso/solver/admm_solver`.<br>
3) A Proximal Point method for Group and Fused Graphical Lasso<br>
We implement the PPDNA Algorithm like proposed in [4]. To use this, import `warmPPDNA` from `gglasso/solver/ppdna_solver`.<br>
4) ADMM method for Group Graphical Lasso where the features/variables are non-conforming<br>
Method for problems where not all variables exist in all instances/datasets. To use this, import `ext_ADMM_MGL` from `gglasso/solver/ext_admm_solver`.<br>
## Citation
If you use `GGLasso`, please consider the following citation
@article{Schaipp2021,
doi = {10.21105/joss.03865},
url = {https://doi.org/10.21105/joss.03865},
year = {2021},
publisher = {The Open Journal},
volume = {6},
number = {68},
pages = {3865},
author = {Fabian Schaipp and Oleg Vlasovets and Christian L. Müller},
title = {GGLasso - a Python package for General Graphical Lasso computation},
journal = {Journal of Open Source Software}
}
## Community Guidelines
1) Contributions and suggestions to the software are always welcome.
Please, consult our [contribution guidelines](CONTRIBUTING.md) prior
to submitting a pull request.
2) Report issues or problems with the software using github’s [issue
tracker](https://github.com/fabian-sp/GGLasso/issues).
3) Contributors must adhere to the [Code of
Conduct](CODE_OF_CONDUCT.md).
## References
* [1] Friedman, J., Hastie, T., and Tibshirani, R. (2007). Sparse inverse covariance estimation with the Graphical Lasso. Biostatistics, 9(3):432–441.
* [2] Danaher, P., Wang, P., and Witten, D. M. (2013). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(2):373–397.
* [3] Tomasi, F., Tozzo, V., Salzo, S., and Verri, A. (2018). Latent Variable Time-varying Network Inference. InProceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM.
* [4] Zhang, Y., Zhang, N., Sun, D., and Toh, K.-C. (2020). A proximal point dual Newton algorithm for solving group graphical Lasso problems. SIAM J. Optim., 30(3):2197–2220.
%package -n python3-gglasso
Summary: Algorithms for Single and Multiple Graphical Lasso problems.
Provides: python-gglasso
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-gglasso
# GGLasso
[](https://pypi.python.org/pypi/gglasso/)
[](https://pypi.python.org/pypi/gglasso/)
[](https://www.python.org/)
[](http://gglasso.readthedocs.io/?badge=latest)
[](https://doi.org/10.21105/joss.03865)
[](https://arxiv.org/abs/2110.10521)
This package contains algorithms for solving General Graphical Lasso (GGLasso) problems, including single, multiple, as well as latent
Graphical Lasso problems. <br>
[Docs](https://gglasso.readthedocs.io/en/latest/) | [Examples](https://gglasso.readthedocs.io/en/latest/auto_examples/index.html)
## Getting started
### Install via pip
The package is available on pip and can be installed with
pip install gglasso
### Install from source
Alternatively, you can install the package from source using the following commands:
git clone https://github.com/fabian-sp/GGLasso.git
pip install -r requirements.txt
python setup.py
Test your installation with
pytest gglasso/ -v
### Advanced options
When installing from source, you can also install dependencies with `conda` via the command
$ while read requirement; do conda install --yes $requirement || pip install $requirement; done < requirements.txt
If you wish to install `gglasso` in developer mode, i.e. not having to reinstall `gglasso` everytime the source code changes (either by remote or local changes), run
python setup.py clean --all develop clean --all
## The `glasso_problem` class
`GGLasso` can solve multiple problem forumulations, e.g. single and multiple Graphical Lasso problems as well as with and without latent factors. Therefore, the main entry point for the user is the `glasso_problem` class which chooses automatically the correct solver and model selection functionality. See [our documentation](https://gglasso.readthedocs.io/en/latest/problem-object.html) for all the details.
## Algorithms
`GGLasso` contains algorithms for Single and Multiple Graphical Lasso problems. Moreover, it allows to model latent variables (Latent variable Graphical Lasso) in order to estimate a precision matrix of type **sparse - low rank**. The following algorithms are contained in the package.
<br>
1) ADMM for Single Graphical Lasso<br>
2) ADMM for Group and Fused Graphical Lasso<br>
The algorithm was proposed in [2] and [3]. To use this, import `ADMM_MGL` from `gglasso/solver/admm_solver`.<br>
3) A Proximal Point method for Group and Fused Graphical Lasso<br>
We implement the PPDNA Algorithm like proposed in [4]. To use this, import `warmPPDNA` from `gglasso/solver/ppdna_solver`.<br>
4) ADMM method for Group Graphical Lasso where the features/variables are non-conforming<br>
Method for problems where not all variables exist in all instances/datasets. To use this, import `ext_ADMM_MGL` from `gglasso/solver/ext_admm_solver`.<br>
## Citation
If you use `GGLasso`, please consider the following citation
@article{Schaipp2021,
doi = {10.21105/joss.03865},
url = {https://doi.org/10.21105/joss.03865},
year = {2021},
publisher = {The Open Journal},
volume = {6},
number = {68},
pages = {3865},
author = {Fabian Schaipp and Oleg Vlasovets and Christian L. Müller},
title = {GGLasso - a Python package for General Graphical Lasso computation},
journal = {Journal of Open Source Software}
}
## Community Guidelines
1) Contributions and suggestions to the software are always welcome.
Please, consult our [contribution guidelines](CONTRIBUTING.md) prior
to submitting a pull request.
2) Report issues or problems with the software using github’s [issue
tracker](https://github.com/fabian-sp/GGLasso/issues).
3) Contributors must adhere to the [Code of
Conduct](CODE_OF_CONDUCT.md).
## References
* [1] Friedman, J., Hastie, T., and Tibshirani, R. (2007). Sparse inverse covariance estimation with the Graphical Lasso. Biostatistics, 9(3):432–441.
* [2] Danaher, P., Wang, P., and Witten, D. M. (2013). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(2):373–397.
* [3] Tomasi, F., Tozzo, V., Salzo, S., and Verri, A. (2018). Latent Variable Time-varying Network Inference. InProceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM.
* [4] Zhang, Y., Zhang, N., Sun, D., and Toh, K.-C. (2020). A proximal point dual Newton algorithm for solving group graphical Lasso problems. SIAM J. Optim., 30(3):2197–2220.
%package help
Summary: Development documents and examples for gglasso
Provides: python3-gglasso-doc
%description help
# GGLasso
[](https://pypi.python.org/pypi/gglasso/)
[](https://pypi.python.org/pypi/gglasso/)
[](https://www.python.org/)
[](http://gglasso.readthedocs.io/?badge=latest)
[](https://doi.org/10.21105/joss.03865)
[](https://arxiv.org/abs/2110.10521)
This package contains algorithms for solving General Graphical Lasso (GGLasso) problems, including single, multiple, as well as latent
Graphical Lasso problems. <br>
[Docs](https://gglasso.readthedocs.io/en/latest/) | [Examples](https://gglasso.readthedocs.io/en/latest/auto_examples/index.html)
## Getting started
### Install via pip
The package is available on pip and can be installed with
pip install gglasso
### Install from source
Alternatively, you can install the package from source using the following commands:
git clone https://github.com/fabian-sp/GGLasso.git
pip install -r requirements.txt
python setup.py
Test your installation with
pytest gglasso/ -v
### Advanced options
When installing from source, you can also install dependencies with `conda` via the command
$ while read requirement; do conda install --yes $requirement || pip install $requirement; done < requirements.txt
If you wish to install `gglasso` in developer mode, i.e. not having to reinstall `gglasso` everytime the source code changes (either by remote or local changes), run
python setup.py clean --all develop clean --all
## The `glasso_problem` class
`GGLasso` can solve multiple problem forumulations, e.g. single and multiple Graphical Lasso problems as well as with and without latent factors. Therefore, the main entry point for the user is the `glasso_problem` class which chooses automatically the correct solver and model selection functionality. See [our documentation](https://gglasso.readthedocs.io/en/latest/problem-object.html) for all the details.
## Algorithms
`GGLasso` contains algorithms for Single and Multiple Graphical Lasso problems. Moreover, it allows to model latent variables (Latent variable Graphical Lasso) in order to estimate a precision matrix of type **sparse - low rank**. The following algorithms are contained in the package.
<br>
1) ADMM for Single Graphical Lasso<br>
2) ADMM for Group and Fused Graphical Lasso<br>
The algorithm was proposed in [2] and [3]. To use this, import `ADMM_MGL` from `gglasso/solver/admm_solver`.<br>
3) A Proximal Point method for Group and Fused Graphical Lasso<br>
We implement the PPDNA Algorithm like proposed in [4]. To use this, import `warmPPDNA` from `gglasso/solver/ppdna_solver`.<br>
4) ADMM method for Group Graphical Lasso where the features/variables are non-conforming<br>
Method for problems where not all variables exist in all instances/datasets. To use this, import `ext_ADMM_MGL` from `gglasso/solver/ext_admm_solver`.<br>
## Citation
If you use `GGLasso`, please consider the following citation
@article{Schaipp2021,
doi = {10.21105/joss.03865},
url = {https://doi.org/10.21105/joss.03865},
year = {2021},
publisher = {The Open Journal},
volume = {6},
number = {68},
pages = {3865},
author = {Fabian Schaipp and Oleg Vlasovets and Christian L. Müller},
title = {GGLasso - a Python package for General Graphical Lasso computation},
journal = {Journal of Open Source Software}
}
## Community Guidelines
1) Contributions and suggestions to the software are always welcome.
Please, consult our [contribution guidelines](CONTRIBUTING.md) prior
to submitting a pull request.
2) Report issues or problems with the software using github’s [issue
tracker](https://github.com/fabian-sp/GGLasso/issues).
3) Contributors must adhere to the [Code of
Conduct](CODE_OF_CONDUCT.md).
## References
* [1] Friedman, J., Hastie, T., and Tibshirani, R. (2007). Sparse inverse covariance estimation with the Graphical Lasso. Biostatistics, 9(3):432–441.
* [2] Danaher, P., Wang, P., and Witten, D. M. (2013). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(2):373–397.
* [3] Tomasi, F., Tozzo, V., Salzo, S., and Verri, A. (2018). Latent Variable Time-varying Network Inference. InProceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM.
* [4] Zhang, Y., Zhang, N., Sun, D., and Toh, K.-C. (2020). A proximal point dual Newton algorithm for solving group graphical Lasso problems. SIAM J. Optim., 30(3):2197–2220.
%prep
%autosetup -n gglasso-0.1.9
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-gglasso -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.9-1
- Package Spec generated
|