summaryrefslogtreecommitdiff
path: root/python-glmnet-py.spec
blob: 9e1e89ad4c912e34ac359744349526e926e56f41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
%global _empty_manifest_terminate_build 0
Name:		python-glmnet-py
Version:	0.1.0b2
Release:	1
Summary:	Python version of glmnet, originally from Stanford University, modified by Han Fang
License:	GPL-2
URL:		https://github.com/hanfang/glmnet_py
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/f5/1a/55b708789a66f2405783bce0f53e02b86128ea3f21d329c87dc6dbef8e51/glmnet_py-0.1.0b2.tar.gz
BuildArch:	noarch

Requires:	python3-joblib

%description
# Glmnet for python 

## Contact

Han Fang
hanfang.cshl@gmail.com

## Install

Using pip (recommended)

    pip install glmnet_py

Complied from source

    git clone https://github.com/hanfang/glmnet_py.git
    cd glmnet_py
    python setup.py install

Requirement: Python3, Linux

Currently, the checked-in version of GLMnet.so is compiled for the following config:

 **Linux:** Linux version 2.6.32-573.26.1.el6.x86_64 (gcc version 4.4.7 20120313 (Red Hat 4.4.7-16) (GCC) ) 
 **OS:** CentOS 6.7 (Final) 
 **Hardware:** 8-core Intel(R) Core(TM) i7-2630QM 
 **gfortran:** version 4.4.7 20120313 (Red Hat 4.4.7-17) (GCC)


## Usage
    import glmnet_py
    from glmnet import glmnet

For more examples, see https://github.com/hanfang/glmnet_python/tree/master/test


## Introduction

This is a python version of the popular `glmnet` library (beta release). Glmnet fits the entire lasso or elastic-net regularization path for `linear` regression, `logistic` and `multinomial` regression models, `poisson` regression and the `cox` model. 

The underlying fortran codes are the same as the `R` version, and uses a cyclical path-wise coordinate descent algorithm as described in the papers linked below. 

Currently, `glmnet` library methods for gaussian, multi-variate gaussian, binomial, multinomial, poisson and cox models are implemented for both normal and sparse matrices.

Additionally, cross-validation is also implemented for gaussian, multivariate gaussian, binomial, multinomial and poisson models. CV for cox models is yet to be implemented. 

CV can be done in both serial and parallel manner. Parallellization is done using `multiprocessing` and `joblib` libraries.

During installation, the fortran code is compiled in the local machine using `gfortran`, and is called by the python code. 

````diff
+Getting started:
````
*The best starting point to use this library is to start with the Jupyter notebooks in the `test` directory (glmnet_examples.ipynb). Detailed explanations of function calls and parameter values along with plenty of examples are provided there to get you started.*

## Authors:

Algorithm was designed by Jerome Friedman, Trevor Hastie and Rob Tibshirani. Fortran code was written by Jerome Friedman. R wrapper (from which the MATLAB wrapper was adapted) was written by Trevor Hastie.

The original MATLAB wrapper was written by Hui Jiang (14 Jul 2009), and was updated and is maintained by Junyang Qian (30 Aug 2013).

This python wrapper (which was adapted from the MATLAB and R wrappers) was originally written by B. J. Balakumar (5 Sep 2016), later modified by Han Fang.

B. J. Balakumar, bbalasub@stanford.edu (5 Sep 2016).
Department of Statistics, Stanford University, Stanford, California, USA. 

REFERENCES:
* Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent, 
http://www.jstatsoft.org/v33/i01/
*Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010*

* Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent,
http://www.jstatsoft.org/v39/i05/
*Journal of Statistical Software, Vol. 39(5) 1-13*

* Tibshirani, Robert., Bien, J., Friedman, J.,Hastie, T.,Simon, N.,Taylor, J. and Tibshirani, Ryan. (2010) Strong Rules for Discarding Predictors in Lasso-type Problems,
http://www-stat.stanford.edu/~tibs/ftp/strong.pdf
*Stanford Statistics Technical Report*





%package -n python3-glmnet-py
Summary:	Python version of glmnet, originally from Stanford University, modified by Han Fang
Provides:	python-glmnet-py
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-glmnet-py
# Glmnet for python 

## Contact

Han Fang
hanfang.cshl@gmail.com

## Install

Using pip (recommended)

    pip install glmnet_py

Complied from source

    git clone https://github.com/hanfang/glmnet_py.git
    cd glmnet_py
    python setup.py install

Requirement: Python3, Linux

Currently, the checked-in version of GLMnet.so is compiled for the following config:

 **Linux:** Linux version 2.6.32-573.26.1.el6.x86_64 (gcc version 4.4.7 20120313 (Red Hat 4.4.7-16) (GCC) ) 
 **OS:** CentOS 6.7 (Final) 
 **Hardware:** 8-core Intel(R) Core(TM) i7-2630QM 
 **gfortran:** version 4.4.7 20120313 (Red Hat 4.4.7-17) (GCC)


## Usage
    import glmnet_py
    from glmnet import glmnet

For more examples, see https://github.com/hanfang/glmnet_python/tree/master/test


## Introduction

This is a python version of the popular `glmnet` library (beta release). Glmnet fits the entire lasso or elastic-net regularization path for `linear` regression, `logistic` and `multinomial` regression models, `poisson` regression and the `cox` model. 

The underlying fortran codes are the same as the `R` version, and uses a cyclical path-wise coordinate descent algorithm as described in the papers linked below. 

Currently, `glmnet` library methods for gaussian, multi-variate gaussian, binomial, multinomial, poisson and cox models are implemented for both normal and sparse matrices.

Additionally, cross-validation is also implemented for gaussian, multivariate gaussian, binomial, multinomial and poisson models. CV for cox models is yet to be implemented. 

CV can be done in both serial and parallel manner. Parallellization is done using `multiprocessing` and `joblib` libraries.

During installation, the fortran code is compiled in the local machine using `gfortran`, and is called by the python code. 

````diff
+Getting started:
````
*The best starting point to use this library is to start with the Jupyter notebooks in the `test` directory (glmnet_examples.ipynb). Detailed explanations of function calls and parameter values along with plenty of examples are provided there to get you started.*

## Authors:

Algorithm was designed by Jerome Friedman, Trevor Hastie and Rob Tibshirani. Fortran code was written by Jerome Friedman. R wrapper (from which the MATLAB wrapper was adapted) was written by Trevor Hastie.

The original MATLAB wrapper was written by Hui Jiang (14 Jul 2009), and was updated and is maintained by Junyang Qian (30 Aug 2013).

This python wrapper (which was adapted from the MATLAB and R wrappers) was originally written by B. J. Balakumar (5 Sep 2016), later modified by Han Fang.

B. J. Balakumar, bbalasub@stanford.edu (5 Sep 2016).
Department of Statistics, Stanford University, Stanford, California, USA. 

REFERENCES:
* Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent, 
http://www.jstatsoft.org/v33/i01/
*Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010*

* Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent,
http://www.jstatsoft.org/v39/i05/
*Journal of Statistical Software, Vol. 39(5) 1-13*

* Tibshirani, Robert., Bien, J., Friedman, J.,Hastie, T.,Simon, N.,Taylor, J. and Tibshirani, Ryan. (2010) Strong Rules for Discarding Predictors in Lasso-type Problems,
http://www-stat.stanford.edu/~tibs/ftp/strong.pdf
*Stanford Statistics Technical Report*





%package help
Summary:	Development documents and examples for glmnet-py
Provides:	python3-glmnet-py-doc
%description help
# Glmnet for python 

## Contact

Han Fang
hanfang.cshl@gmail.com

## Install

Using pip (recommended)

    pip install glmnet_py

Complied from source

    git clone https://github.com/hanfang/glmnet_py.git
    cd glmnet_py
    python setup.py install

Requirement: Python3, Linux

Currently, the checked-in version of GLMnet.so is compiled for the following config:

 **Linux:** Linux version 2.6.32-573.26.1.el6.x86_64 (gcc version 4.4.7 20120313 (Red Hat 4.4.7-16) (GCC) ) 
 **OS:** CentOS 6.7 (Final) 
 **Hardware:** 8-core Intel(R) Core(TM) i7-2630QM 
 **gfortran:** version 4.4.7 20120313 (Red Hat 4.4.7-17) (GCC)


## Usage
    import glmnet_py
    from glmnet import glmnet

For more examples, see https://github.com/hanfang/glmnet_python/tree/master/test


## Introduction

This is a python version of the popular `glmnet` library (beta release). Glmnet fits the entire lasso or elastic-net regularization path for `linear` regression, `logistic` and `multinomial` regression models, `poisson` regression and the `cox` model. 

The underlying fortran codes are the same as the `R` version, and uses a cyclical path-wise coordinate descent algorithm as described in the papers linked below. 

Currently, `glmnet` library methods for gaussian, multi-variate gaussian, binomial, multinomial, poisson and cox models are implemented for both normal and sparse matrices.

Additionally, cross-validation is also implemented for gaussian, multivariate gaussian, binomial, multinomial and poisson models. CV for cox models is yet to be implemented. 

CV can be done in both serial and parallel manner. Parallellization is done using `multiprocessing` and `joblib` libraries.

During installation, the fortran code is compiled in the local machine using `gfortran`, and is called by the python code. 

````diff
+Getting started:
````
*The best starting point to use this library is to start with the Jupyter notebooks in the `test` directory (glmnet_examples.ipynb). Detailed explanations of function calls and parameter values along with plenty of examples are provided there to get you started.*

## Authors:

Algorithm was designed by Jerome Friedman, Trevor Hastie and Rob Tibshirani. Fortran code was written by Jerome Friedman. R wrapper (from which the MATLAB wrapper was adapted) was written by Trevor Hastie.

The original MATLAB wrapper was written by Hui Jiang (14 Jul 2009), and was updated and is maintained by Junyang Qian (30 Aug 2013).

This python wrapper (which was adapted from the MATLAB and R wrappers) was originally written by B. J. Balakumar (5 Sep 2016), later modified by Han Fang.

B. J. Balakumar, bbalasub@stanford.edu (5 Sep 2016).
Department of Statistics, Stanford University, Stanford, California, USA. 

REFERENCES:
* Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent, 
http://www.jstatsoft.org/v33/i01/
*Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010*

* Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent,
http://www.jstatsoft.org/v39/i05/
*Journal of Statistical Software, Vol. 39(5) 1-13*

* Tibshirani, Robert., Bien, J., Friedman, J.,Hastie, T.,Simon, N.,Taylor, J. and Tibshirani, Ryan. (2010) Strong Rules for Discarding Predictors in Lasso-type Problems,
http://www-stat.stanford.edu/~tibs/ftp/strong.pdf
*Stanford Statistics Technical Report*





%prep
%autosetup -n glmnet-py-0.1.0b2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-glmnet-py -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.0b2-1
- Package Spec generated