summaryrefslogtreecommitdiff
path: root/python-gluonts.spec
blob: 43ee6df2e15bbf4c298477b5a8bbb47f407156cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
%global _empty_manifest_terminate_build 0
Name:		python-gluonts
Version:	0.12.7
Release:	1
Summary:	Probabilistic time series modeling in Python.
License:	Apache License 2.0
URL:		https://github.com/awslabs/gluonts/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/7d/d7/32ce8ef7371399230c301e1d2d9bbffb5b962516afc9f4ce5439a25843fc/gluonts-0.12.7.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-pydantic
Requires:	python3-tqdm
Requires:	python3-toolz
Requires:	python3-typing-extensions
Requires:	python3-prophet
Requires:	python3-rpy2
Requires:	python3-pyarrow
Requires:	python3-pyarrow
Requires:	python3-ipython
Requires:	python3-ipykernel
Requires:	python3-nbconvert
Requires:	python3-nbsphinx
Requires:	python3-notedown
Requires:	python3-pytest-runner
Requires:	python3-recommonmark
Requires:	python3-sphinx
Requires:	python3-docutils
Requires:	python3-optuna
Requires:	python3-furo
Requires:	python3-m2r2
Requires:	python3-myst-parser
Requires:	python3-click
Requires:	python3-orjson
Requires:	python3-black
Requires:	python3-holidays
Requires:	python3-matplotlib
Requires:	python3-pandas
Requires:	python3-flaky
Requires:	python3-pytest-cov
Requires:	python3-pytest-timeout
Requires:	python3-pytest-xdist
Requires:	python3-pytest
Requires:	python3-ujson
Requires:	python3-requests
Requires:	python3-flask
Requires:	python3-gunicorn
Requires:	python3-sagemaker
Requires:	python3-s3fs
Requires:	python3-fsspec
Requires:	python3-pyarrow
Requires:	python3-pyarrow
Requires:	python3-s3fs
Requires:	python3-ipython
Requires:	python3-ipykernel
Requires:	python3-nbconvert
Requires:	python3-nbsphinx
Requires:	python3-notedown
Requires:	python3-pytest-runner
Requires:	python3-recommonmark
Requires:	python3-sphinx
Requires:	python3-docutils
Requires:	python3-optuna
Requires:	python3-furo
Requires:	python3-m2r2
Requires:	python3-myst-parser
Requires:	python3-click
Requires:	python3-orjson
Requires:	python3-black
Requires:	python3-holidays
Requires:	python3-matplotlib
Requires:	python3-numpy
Requires:	python3-mxnet
Requires:	python3-orjson
Requires:	python3-pyarrow
Requires:	python3-pyarrow
Requires:	python3-flask
Requires:	python3-gunicorn
Requires:	python3-torch
Requires:	python3-pytorch-lightning
Requires:	python3-protobuf
Requires:	python3-scipy
Requires:	python3-scipy

%description
<img class="hide-on-website" height="100px" src="https://ts.gluon.ai/dev/_static/gluonts.svg">

# GluonTS - Probabilistic Time Series Modeling in Python

[![PyPI](https://img.shields.io/pypi/v/gluonts.svg?style=flat-square&color=b75347)](https://pypi.org/project/gluonts/)
[![GitHub](https://img.shields.io/github/license/awslabs/gluonts.svg?style=flat-square&color=df7e66)](./LICENSE)
[![Static](https://img.shields.io/static/v1?label=docs&message=stable&color=edc775&style=flat-square)](https://ts.gluon.ai/)
[![Static](https://img.shields.io/static/v1?label=docs&message=dev&color=edc775&style=flat-square)](https://ts.gluon.ai/dev/)
[![PyPI Downloads](https://img.shields.io/pypi/dm/gluonts?style=flat-square&color=94b594)](https://pepy.tech/project/gluonts)

GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models,
based on [PyTorch](https://pytorch.org) and [MXNet](https://mxnet.apache.org).


## Installation

GluonTS requires Python 3.7 or newer, and the easiest way to install it is via `pip`:

```bash
# support for mxnet models, faster datasets
pip install "gluonts[mxnet,pro]"

# support for torch models, faster datasets
pip install "gluonts[torch,pro]"
```

## Simple Example

To illustrate how to use GluonTS, we train a DeepAR-model and make predictions
using the simple "airpassengers" dataset. The dataset consists of a single
time series, containing monthly international passengers between the years
1949 and 1960, a total of 144 values (12 years * 12 months). We split the
dataset into train and test parts, by removing the last three years (36 month)
from the train data. Thus, we will train a model on just the first nine years
of data.


```py
import pandas as pd
import matplotlib.pyplot as plt
from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.mx import DeepAREstimator, Trainer

# Load data from a CSV file into a PandasDataset
df = pd.read_csv(
    "https://raw.githubusercontent.com/AileenNielsen/"
    "TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv",
    index_col=0,
    parse_dates=True,
)
dataset = PandasDataset(df, target="#Passengers")

# Train a DeepAR model on all data but the last 36 months
training_data, test_gen = split(dataset, offset=-36)
model = DeepAREstimator(
    prediction_length=12, freq="M", trainer=Trainer(epochs=5)
).train(training_data)

# Generate test instances and predictions for them
test_data = test_gen.generate_instances(prediction_length=12, windows=3)
forecasts = list(model.predict(test_data.input))

# Plot predictions
df["#Passengers"].plot(color="black")
for forecast, color in zip(forecasts, ["green", "blue", "purple"]):
    forecast.plot(color=f"tab:{color}")
plt.legend(["True values"], loc="upper left", fontsize="xx-large")
```

![[train-test]](https://d2kv9n23y3w0pn.cloudfront.net/static/README/forecasts.png)


Note that the forecasts are displayed in terms of a probability distribution:
The shaded areas represent the 50% and 90% prediction intervals, respectively,
centered around the median.

## Contributing

If you wish to contribute to the project, please refer to our
[contribution guidelines](https://github.com/awslabs/gluonts/tree/dev/CONTRIBUTING.md).

## Citing

If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers,
in addition to any model-specific references that are relevant for your work:

```bibtex
@article{gluonts_jmlr,
  author  = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider
    and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix
    and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and
    Ali Caner Türkmen and Yuyang Wang},
  title   = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {116},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/19-820.html}
}
```

```bibtex
@article{gluonts_arxiv,
  author  = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
    Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
    and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
    Türkmen, A. C. and Wang, Y.},
  title   = {{GluonTS: Probabilistic Time Series Modeling in Python}},
  journal = {arXiv preprint arXiv:1906.05264},
  year    = {2019}
}
```

## Links

### Documentation

* [Documentation (stable)](https://ts.gluon.ai/stable/)
* [Documentation (development)](https://ts.gluon.ai/dev/)

### References

* [JMLR MLOSS Paper](http://www.jmlr.org/papers/v21/19-820.html)
* [ArXiv Paper](https://arxiv.org/abs/1906.05264)
* [Collected Papers from the group behind GluonTS](https://github.com/awslabs/gluonts/tree/dev/REFERENCES.md): a bibliography.

### Tutorials and Workshops

* [Tutorial at IJCAI 2021 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-IJCAI-2021/) with [YouTube link](https://youtu.be/AB3I9pdT46c). 
* [Tutorial at WWW 2020 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-WWW-2020/)
* [Tutorial at SIGMOD 2019](https://lovvge.github.io/Forecasting-Tutorials/SIGMOD-2019/)
* [Tutorial at KDD 2019](https://lovvge.github.io/Forecasting-Tutorial-KDD-2019/)
* [Tutorial at VLDB 2018](https://lovvge.github.io/Forecasting-Tutorial-VLDB-2018/)
* [Neural Time Series with GluonTS](https://youtu.be/beEJMIt9xJ8)
* [International Symposium of Forecasting: Deep Learning for Forecasting workshop](https://lostella.github.io/ISF-2020-Deep-Learning-Workshop/)




%package -n python3-gluonts
Summary:	Probabilistic time series modeling in Python.
Provides:	python-gluonts
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-gluonts
<img class="hide-on-website" height="100px" src="https://ts.gluon.ai/dev/_static/gluonts.svg">

# GluonTS - Probabilistic Time Series Modeling in Python

[![PyPI](https://img.shields.io/pypi/v/gluonts.svg?style=flat-square&color=b75347)](https://pypi.org/project/gluonts/)
[![GitHub](https://img.shields.io/github/license/awslabs/gluonts.svg?style=flat-square&color=df7e66)](./LICENSE)
[![Static](https://img.shields.io/static/v1?label=docs&message=stable&color=edc775&style=flat-square)](https://ts.gluon.ai/)
[![Static](https://img.shields.io/static/v1?label=docs&message=dev&color=edc775&style=flat-square)](https://ts.gluon.ai/dev/)
[![PyPI Downloads](https://img.shields.io/pypi/dm/gluonts?style=flat-square&color=94b594)](https://pepy.tech/project/gluonts)

GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models,
based on [PyTorch](https://pytorch.org) and [MXNet](https://mxnet.apache.org).


## Installation

GluonTS requires Python 3.7 or newer, and the easiest way to install it is via `pip`:

```bash
# support for mxnet models, faster datasets
pip install "gluonts[mxnet,pro]"

# support for torch models, faster datasets
pip install "gluonts[torch,pro]"
```

## Simple Example

To illustrate how to use GluonTS, we train a DeepAR-model and make predictions
using the simple "airpassengers" dataset. The dataset consists of a single
time series, containing monthly international passengers between the years
1949 and 1960, a total of 144 values (12 years * 12 months). We split the
dataset into train and test parts, by removing the last three years (36 month)
from the train data. Thus, we will train a model on just the first nine years
of data.


```py
import pandas as pd
import matplotlib.pyplot as plt
from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.mx import DeepAREstimator, Trainer

# Load data from a CSV file into a PandasDataset
df = pd.read_csv(
    "https://raw.githubusercontent.com/AileenNielsen/"
    "TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv",
    index_col=0,
    parse_dates=True,
)
dataset = PandasDataset(df, target="#Passengers")

# Train a DeepAR model on all data but the last 36 months
training_data, test_gen = split(dataset, offset=-36)
model = DeepAREstimator(
    prediction_length=12, freq="M", trainer=Trainer(epochs=5)
).train(training_data)

# Generate test instances and predictions for them
test_data = test_gen.generate_instances(prediction_length=12, windows=3)
forecasts = list(model.predict(test_data.input))

# Plot predictions
df["#Passengers"].plot(color="black")
for forecast, color in zip(forecasts, ["green", "blue", "purple"]):
    forecast.plot(color=f"tab:{color}")
plt.legend(["True values"], loc="upper left", fontsize="xx-large")
```

![[train-test]](https://d2kv9n23y3w0pn.cloudfront.net/static/README/forecasts.png)


Note that the forecasts are displayed in terms of a probability distribution:
The shaded areas represent the 50% and 90% prediction intervals, respectively,
centered around the median.

## Contributing

If you wish to contribute to the project, please refer to our
[contribution guidelines](https://github.com/awslabs/gluonts/tree/dev/CONTRIBUTING.md).

## Citing

If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers,
in addition to any model-specific references that are relevant for your work:

```bibtex
@article{gluonts_jmlr,
  author  = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider
    and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix
    and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and
    Ali Caner Türkmen and Yuyang Wang},
  title   = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {116},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/19-820.html}
}
```

```bibtex
@article{gluonts_arxiv,
  author  = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
    Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
    and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
    Türkmen, A. C. and Wang, Y.},
  title   = {{GluonTS: Probabilistic Time Series Modeling in Python}},
  journal = {arXiv preprint arXiv:1906.05264},
  year    = {2019}
}
```

## Links

### Documentation

* [Documentation (stable)](https://ts.gluon.ai/stable/)
* [Documentation (development)](https://ts.gluon.ai/dev/)

### References

* [JMLR MLOSS Paper](http://www.jmlr.org/papers/v21/19-820.html)
* [ArXiv Paper](https://arxiv.org/abs/1906.05264)
* [Collected Papers from the group behind GluonTS](https://github.com/awslabs/gluonts/tree/dev/REFERENCES.md): a bibliography.

### Tutorials and Workshops

* [Tutorial at IJCAI 2021 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-IJCAI-2021/) with [YouTube link](https://youtu.be/AB3I9pdT46c). 
* [Tutorial at WWW 2020 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-WWW-2020/)
* [Tutorial at SIGMOD 2019](https://lovvge.github.io/Forecasting-Tutorials/SIGMOD-2019/)
* [Tutorial at KDD 2019](https://lovvge.github.io/Forecasting-Tutorial-KDD-2019/)
* [Tutorial at VLDB 2018](https://lovvge.github.io/Forecasting-Tutorial-VLDB-2018/)
* [Neural Time Series with GluonTS](https://youtu.be/beEJMIt9xJ8)
* [International Symposium of Forecasting: Deep Learning for Forecasting workshop](https://lostella.github.io/ISF-2020-Deep-Learning-Workshop/)




%package help
Summary:	Development documents and examples for gluonts
Provides:	python3-gluonts-doc
%description help
<img class="hide-on-website" height="100px" src="https://ts.gluon.ai/dev/_static/gluonts.svg">

# GluonTS - Probabilistic Time Series Modeling in Python

[![PyPI](https://img.shields.io/pypi/v/gluonts.svg?style=flat-square&color=b75347)](https://pypi.org/project/gluonts/)
[![GitHub](https://img.shields.io/github/license/awslabs/gluonts.svg?style=flat-square&color=df7e66)](./LICENSE)
[![Static](https://img.shields.io/static/v1?label=docs&message=stable&color=edc775&style=flat-square)](https://ts.gluon.ai/)
[![Static](https://img.shields.io/static/v1?label=docs&message=dev&color=edc775&style=flat-square)](https://ts.gluon.ai/dev/)
[![PyPI Downloads](https://img.shields.io/pypi/dm/gluonts?style=flat-square&color=94b594)](https://pepy.tech/project/gluonts)

GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models,
based on [PyTorch](https://pytorch.org) and [MXNet](https://mxnet.apache.org).


## Installation

GluonTS requires Python 3.7 or newer, and the easiest way to install it is via `pip`:

```bash
# support for mxnet models, faster datasets
pip install "gluonts[mxnet,pro]"

# support for torch models, faster datasets
pip install "gluonts[torch,pro]"
```

## Simple Example

To illustrate how to use GluonTS, we train a DeepAR-model and make predictions
using the simple "airpassengers" dataset. The dataset consists of a single
time series, containing monthly international passengers between the years
1949 and 1960, a total of 144 values (12 years * 12 months). We split the
dataset into train and test parts, by removing the last three years (36 month)
from the train data. Thus, we will train a model on just the first nine years
of data.


```py
import pandas as pd
import matplotlib.pyplot as plt
from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.mx import DeepAREstimator, Trainer

# Load data from a CSV file into a PandasDataset
df = pd.read_csv(
    "https://raw.githubusercontent.com/AileenNielsen/"
    "TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv",
    index_col=0,
    parse_dates=True,
)
dataset = PandasDataset(df, target="#Passengers")

# Train a DeepAR model on all data but the last 36 months
training_data, test_gen = split(dataset, offset=-36)
model = DeepAREstimator(
    prediction_length=12, freq="M", trainer=Trainer(epochs=5)
).train(training_data)

# Generate test instances and predictions for them
test_data = test_gen.generate_instances(prediction_length=12, windows=3)
forecasts = list(model.predict(test_data.input))

# Plot predictions
df["#Passengers"].plot(color="black")
for forecast, color in zip(forecasts, ["green", "blue", "purple"]):
    forecast.plot(color=f"tab:{color}")
plt.legend(["True values"], loc="upper left", fontsize="xx-large")
```

![[train-test]](https://d2kv9n23y3w0pn.cloudfront.net/static/README/forecasts.png)


Note that the forecasts are displayed in terms of a probability distribution:
The shaded areas represent the 50% and 90% prediction intervals, respectively,
centered around the median.

## Contributing

If you wish to contribute to the project, please refer to our
[contribution guidelines](https://github.com/awslabs/gluonts/tree/dev/CONTRIBUTING.md).

## Citing

If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers,
in addition to any model-specific references that are relevant for your work:

```bibtex
@article{gluonts_jmlr,
  author  = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider
    and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix
    and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and
    Ali Caner Türkmen and Yuyang Wang},
  title   = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {116},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/19-820.html}
}
```

```bibtex
@article{gluonts_arxiv,
  author  = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
    Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
    and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
    Türkmen, A. C. and Wang, Y.},
  title   = {{GluonTS: Probabilistic Time Series Modeling in Python}},
  journal = {arXiv preprint arXiv:1906.05264},
  year    = {2019}
}
```

## Links

### Documentation

* [Documentation (stable)](https://ts.gluon.ai/stable/)
* [Documentation (development)](https://ts.gluon.ai/dev/)

### References

* [JMLR MLOSS Paper](http://www.jmlr.org/papers/v21/19-820.html)
* [ArXiv Paper](https://arxiv.org/abs/1906.05264)
* [Collected Papers from the group behind GluonTS](https://github.com/awslabs/gluonts/tree/dev/REFERENCES.md): a bibliography.

### Tutorials and Workshops

* [Tutorial at IJCAI 2021 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-IJCAI-2021/) with [YouTube link](https://youtu.be/AB3I9pdT46c). 
* [Tutorial at WWW 2020 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-WWW-2020/)
* [Tutorial at SIGMOD 2019](https://lovvge.github.io/Forecasting-Tutorials/SIGMOD-2019/)
* [Tutorial at KDD 2019](https://lovvge.github.io/Forecasting-Tutorial-KDD-2019/)
* [Tutorial at VLDB 2018](https://lovvge.github.io/Forecasting-Tutorial-VLDB-2018/)
* [Neural Time Series with GluonTS](https://youtu.be/beEJMIt9xJ8)
* [International Symposium of Forecasting: Deep Learning for Forecasting workshop](https://lostella.github.io/ISF-2020-Deep-Learning-Workshop/)




%prep
%autosetup -n gluonts-0.12.7

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-gluonts -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.12.7-1
- Package Spec generated