1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
|
%global _empty_manifest_terminate_build 0
Name: python-graphique
Version: 1.2
Release: 1
Summary: GraphQL service for arrow tables and parquet data sets.
License: Copyright 2022 Aric Coady Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
URL: https://github.com/coady/graphique
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/38/bf/35c6c54a4a25176f2613accaf7aed5bd336e607268556aa06a186aa5b9c2/graphique-1.2.tar.gz
BuildArch: noarch
Requires: python3-pyarrow
Requires: python3-strawberry-graphql[asgi,cli]
Requires: python3-uvicorn[standard]
%description
[](https://pypi.org/project/graphique/)

[](https://pepy.tech/project/graphique)

[](https://github.com/coady/graphique/actions)
[](https://codecov.io/gh/coady/graphique/)
[](https://github.com/coady/graphique/security/code-scanning)
[](https://pypi.org/project/black/)
[](http://mypy-lang.org/)
[GraphQL](https://graphql.org) service for [arrow](https://arrow.apache.org) tables and [parquet](https://parquet.apache.org) data sets. The schema for a query API is derived automatically.
## Usage
```console
% env PARQUET_PATH=... uvicorn graphique.service:app
```
Open http://localhost:8000/ to try out the API in [GraphiQL](https://github.com/graphql/graphiql/tree/main/packages/graphiql#readme). There is a test fixture at `./tests/fixtures/zipcodes.parquet`.
```console
% env PARQUET_PATH=... strawberry export-schema graphique.service:app.schema
```
outputs the graphql schema for a parquet data set.
### Configuration
Graphique uses [Starlette's config](https://www.starlette.io/config/): in environment variables or a `.env` file. Config variables are used as input to a [parquet dataset](https://arrow.apache.org/docs/python/dataset.html).
* PARQUET_PATH: path to the parquet directory or file
* FEDERATED = '': field name to extend type `Query` with a federated `Table`
* DEBUG = False: run service in debug mode, which includes timing
* COLUMNS = None: list of names, or mapping of aliases, of columns to select
* FILTERS = None: json `filter` query for which rows to read at startup
For more options create a custom [ASGI](https://asgi.readthedocs.io/en/latest/index.html) app. Call graphique's `GraphQL` on an arrow [Dataset](https://arrow.apache.org/docs/python/api/dataset.html), [Scanner](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.Scanner.html), or [Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html). The GraphQL `Table` type will be the root Query type.
Supply a mapping of names to datasets for multiple roots, and to enable federation.
```python
import pyarrow.dataset as ds
from graphique import GraphQL
app = GraphQL(ds.dataset(...)) # Table is root query type
app = GraphQL.federated({<name>: ds.dataset(...), ...}, keys={...}) # Tables on federated fields
```
Start like any ASGI app.
```console
uvicorn <module>:app
```
Configuration options exist to provide a convenient no-code solution, but are subject to change in the future. Using a custom app is recommended for production usage.
### API
#### types
* `Dataset`: interface for an arrow dataset, scanner, or table.
* `Table`: implements the `Dataset` interface. Adds typed `row`, `columns`, and `filter` fields from introspecting the schema.
* `Column`: interface for an arrow column (a.k.a. ChunkedArray). Each arrow data type has a corresponding column implementation: Boolean, Int, Long, Float, Decimal, Date, Datetime, Time, Duration, Base64, String, List, Struct. All columns have a `values` field for their list of scalars. Additional fields vary by type.
* `Row`: scalar fields. Arrow tables are column-oriented, and graphique encourages that usage for performance. A single `row` field is provided for convenience, but a field for a list of rows is not. Requesting parallel columns is far more efficient.
#### selection
* `slice`: contiguous selection of rows
* `filter`: select rows with simple predicates
* `scan`: select rows and project columns with expressions
#### projection
* `columns`: provides a field for every `Column` in the schema
* `column`: access a column of any type by name
* `row`: provides a field for each scalar of a single row
* `apply`: transform columns by applying a function
* `join`: join tables by key columns
#### aggregation
* `group`: group by given columns, transforming the others into list columns
* `partition`: partition on adjacent values in given columns, transforming the others into list columns
* `aggregate`: apply reduce functions to list columns
* `tables`: return a list of tables by splitting on the scalars in list columns
#### ordering
* `sort`: sort table by given columns
* `min`: select rows with smallest values
* `max`: select rows with largest values
### Performance
Graphique relies on native [PyArrow](https://arrow.apache.org/docs/python/index.html) routines wherever possible. Otherwise it falls back to using [NumPy](https://numpy.org/doc/stable/) or custom optimizations.
By default, datasets are read on-demand, with only the necessary rows and columns scanned. Although graphique is a running service, [parquet is performant](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.Dataset.html) at reading a subset of data. Optionally specify `FILTERS` in the json `filter` format to read a subset of rows at startup, trading-off memory for latency. An empty filter (`{}`) will read the whole table.
Specifying `COLUMNS` will limit memory usage when reading at startup (`FILTERS`). There is little speed difference as unused columns are inherently ignored. Optional aliasing can also be used for camel casing.
If index columns are detected in the schema metadata, then an initial `filter` will also attempt a binary search on tables.
## Installation
```console
% pip install graphique[server]
```
## Dependencies
* pyarrow >=12
* strawberry-graphql[asgi,cli]
* uvicorn (or other [ASGI server](https://asgi.readthedocs.io/en/latest/implementations.html))
## Tests
100% branch coverage.
```console
% pytest [--cov]
```
## Changes
1.2
* Pyarrow >=12 required
* Grouping fragments optimized
* Group by empty columns
* Batch sorting and grouping into lists
1.1
* Pyarrow >=11 required
* Python >=3.8 required
* Scannable functions added
* List aggregations deprecated
* Group by fragments
* Month day nano interval array
* `min` and `max` fields memory optimized
1.0
* Pyarrow >=10 required
* Dataset schema introspection
* Dataset scanning with selection and projection
* Binary search on sorted columns
* List aggregation, filtering, and sorting optimizations
* Compute functions generalized
* Multiple datasets and federation
* Provisional dataset `join` and `take`
0.9
* Pyarrow >=9 required
* Multi-directional sorting
* Removed unnecessary interfaces
* Filtering has stricter typing
0.8
* Pyarrow >=8 required
* Grouping and aggregation integrated
* `AbstractTable` interface renamed to `Dataset`
* `Binary` scalar renamed to `Base64`
0.7
* Pyarrow >=7 required
* `FILTERS` use query syntax and trigger reading the dataset
* `FEDERATED` field configuration
* List columns support sorting and filtering
* Group by and aggregate optimizations
* Dataset scanning
0.6
* Pyarrow >=6 required
* Group by optimized and replaced `unique` field
* Dictionary related optimizations
* Null consistency with arrow `count` functions
0.5
* Pyarrow >=5 required
* Stricter validation of inputs
* Columns can be cast to another arrow data type
* Grouping uses large list arrays with 64-bit counts
* Datasets are read on-demand or optionally at startup
0.4
* Pyarrow >=4 required
* `sort` updated to use new native routines
* `partition` tables by adjacent values and differences
* `filter` supports unknown column types using tagged union pattern
* `Groups` replaced with `Table.tables` and `Table.aggregate` fields
* Tagged unions used for `filter`, `apply`, and `partition` functions
0.3
* Pyarrow >=3 required
* `any` and `all` fields
* String column `split` field
0.2
* Pyarrow >= 2 required
* `ListColumn` and `StructColumn` types
* `Groups` type with `aggregate` field
* `group` and `unique` optimized
* Statistical fields: `mode`, `stddev`, `variance`
* `is_in`, `min`, and `max` optimized
%package -n python3-graphique
Summary: GraphQL service for arrow tables and parquet data sets.
Provides: python-graphique
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-graphique
[](https://pypi.org/project/graphique/)

[](https://pepy.tech/project/graphique)

[](https://github.com/coady/graphique/actions)
[](https://codecov.io/gh/coady/graphique/)
[](https://github.com/coady/graphique/security/code-scanning)
[](https://pypi.org/project/black/)
[](http://mypy-lang.org/)
[GraphQL](https://graphql.org) service for [arrow](https://arrow.apache.org) tables and [parquet](https://parquet.apache.org) data sets. The schema for a query API is derived automatically.
## Usage
```console
% env PARQUET_PATH=... uvicorn graphique.service:app
```
Open http://localhost:8000/ to try out the API in [GraphiQL](https://github.com/graphql/graphiql/tree/main/packages/graphiql#readme). There is a test fixture at `./tests/fixtures/zipcodes.parquet`.
```console
% env PARQUET_PATH=... strawberry export-schema graphique.service:app.schema
```
outputs the graphql schema for a parquet data set.
### Configuration
Graphique uses [Starlette's config](https://www.starlette.io/config/): in environment variables or a `.env` file. Config variables are used as input to a [parquet dataset](https://arrow.apache.org/docs/python/dataset.html).
* PARQUET_PATH: path to the parquet directory or file
* FEDERATED = '': field name to extend type `Query` with a federated `Table`
* DEBUG = False: run service in debug mode, which includes timing
* COLUMNS = None: list of names, or mapping of aliases, of columns to select
* FILTERS = None: json `filter` query for which rows to read at startup
For more options create a custom [ASGI](https://asgi.readthedocs.io/en/latest/index.html) app. Call graphique's `GraphQL` on an arrow [Dataset](https://arrow.apache.org/docs/python/api/dataset.html), [Scanner](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.Scanner.html), or [Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html). The GraphQL `Table` type will be the root Query type.
Supply a mapping of names to datasets for multiple roots, and to enable federation.
```python
import pyarrow.dataset as ds
from graphique import GraphQL
app = GraphQL(ds.dataset(...)) # Table is root query type
app = GraphQL.federated({<name>: ds.dataset(...), ...}, keys={...}) # Tables on federated fields
```
Start like any ASGI app.
```console
uvicorn <module>:app
```
Configuration options exist to provide a convenient no-code solution, but are subject to change in the future. Using a custom app is recommended for production usage.
### API
#### types
* `Dataset`: interface for an arrow dataset, scanner, or table.
* `Table`: implements the `Dataset` interface. Adds typed `row`, `columns`, and `filter` fields from introspecting the schema.
* `Column`: interface for an arrow column (a.k.a. ChunkedArray). Each arrow data type has a corresponding column implementation: Boolean, Int, Long, Float, Decimal, Date, Datetime, Time, Duration, Base64, String, List, Struct. All columns have a `values` field for their list of scalars. Additional fields vary by type.
* `Row`: scalar fields. Arrow tables are column-oriented, and graphique encourages that usage for performance. A single `row` field is provided for convenience, but a field for a list of rows is not. Requesting parallel columns is far more efficient.
#### selection
* `slice`: contiguous selection of rows
* `filter`: select rows with simple predicates
* `scan`: select rows and project columns with expressions
#### projection
* `columns`: provides a field for every `Column` in the schema
* `column`: access a column of any type by name
* `row`: provides a field for each scalar of a single row
* `apply`: transform columns by applying a function
* `join`: join tables by key columns
#### aggregation
* `group`: group by given columns, transforming the others into list columns
* `partition`: partition on adjacent values in given columns, transforming the others into list columns
* `aggregate`: apply reduce functions to list columns
* `tables`: return a list of tables by splitting on the scalars in list columns
#### ordering
* `sort`: sort table by given columns
* `min`: select rows with smallest values
* `max`: select rows with largest values
### Performance
Graphique relies on native [PyArrow](https://arrow.apache.org/docs/python/index.html) routines wherever possible. Otherwise it falls back to using [NumPy](https://numpy.org/doc/stable/) or custom optimizations.
By default, datasets are read on-demand, with only the necessary rows and columns scanned. Although graphique is a running service, [parquet is performant](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.Dataset.html) at reading a subset of data. Optionally specify `FILTERS` in the json `filter` format to read a subset of rows at startup, trading-off memory for latency. An empty filter (`{}`) will read the whole table.
Specifying `COLUMNS` will limit memory usage when reading at startup (`FILTERS`). There is little speed difference as unused columns are inherently ignored. Optional aliasing can also be used for camel casing.
If index columns are detected in the schema metadata, then an initial `filter` will also attempt a binary search on tables.
## Installation
```console
% pip install graphique[server]
```
## Dependencies
* pyarrow >=12
* strawberry-graphql[asgi,cli]
* uvicorn (or other [ASGI server](https://asgi.readthedocs.io/en/latest/implementations.html))
## Tests
100% branch coverage.
```console
% pytest [--cov]
```
## Changes
1.2
* Pyarrow >=12 required
* Grouping fragments optimized
* Group by empty columns
* Batch sorting and grouping into lists
1.1
* Pyarrow >=11 required
* Python >=3.8 required
* Scannable functions added
* List aggregations deprecated
* Group by fragments
* Month day nano interval array
* `min` and `max` fields memory optimized
1.0
* Pyarrow >=10 required
* Dataset schema introspection
* Dataset scanning with selection and projection
* Binary search on sorted columns
* List aggregation, filtering, and sorting optimizations
* Compute functions generalized
* Multiple datasets and federation
* Provisional dataset `join` and `take`
0.9
* Pyarrow >=9 required
* Multi-directional sorting
* Removed unnecessary interfaces
* Filtering has stricter typing
0.8
* Pyarrow >=8 required
* Grouping and aggregation integrated
* `AbstractTable` interface renamed to `Dataset`
* `Binary` scalar renamed to `Base64`
0.7
* Pyarrow >=7 required
* `FILTERS` use query syntax and trigger reading the dataset
* `FEDERATED` field configuration
* List columns support sorting and filtering
* Group by and aggregate optimizations
* Dataset scanning
0.6
* Pyarrow >=6 required
* Group by optimized and replaced `unique` field
* Dictionary related optimizations
* Null consistency with arrow `count` functions
0.5
* Pyarrow >=5 required
* Stricter validation of inputs
* Columns can be cast to another arrow data type
* Grouping uses large list arrays with 64-bit counts
* Datasets are read on-demand or optionally at startup
0.4
* Pyarrow >=4 required
* `sort` updated to use new native routines
* `partition` tables by adjacent values and differences
* `filter` supports unknown column types using tagged union pattern
* `Groups` replaced with `Table.tables` and `Table.aggregate` fields
* Tagged unions used for `filter`, `apply`, and `partition` functions
0.3
* Pyarrow >=3 required
* `any` and `all` fields
* String column `split` field
0.2
* Pyarrow >= 2 required
* `ListColumn` and `StructColumn` types
* `Groups` type with `aggregate` field
* `group` and `unique` optimized
* Statistical fields: `mode`, `stddev`, `variance`
* `is_in`, `min`, and `max` optimized
%package help
Summary: Development documents and examples for graphique
Provides: python3-graphique-doc
%description help
[](https://pypi.org/project/graphique/)

[](https://pepy.tech/project/graphique)

[](https://github.com/coady/graphique/actions)
[](https://codecov.io/gh/coady/graphique/)
[](https://github.com/coady/graphique/security/code-scanning)
[](https://pypi.org/project/black/)
[](http://mypy-lang.org/)
[GraphQL](https://graphql.org) service for [arrow](https://arrow.apache.org) tables and [parquet](https://parquet.apache.org) data sets. The schema for a query API is derived automatically.
## Usage
```console
% env PARQUET_PATH=... uvicorn graphique.service:app
```
Open http://localhost:8000/ to try out the API in [GraphiQL](https://github.com/graphql/graphiql/tree/main/packages/graphiql#readme). There is a test fixture at `./tests/fixtures/zipcodes.parquet`.
```console
% env PARQUET_PATH=... strawberry export-schema graphique.service:app.schema
```
outputs the graphql schema for a parquet data set.
### Configuration
Graphique uses [Starlette's config](https://www.starlette.io/config/): in environment variables or a `.env` file. Config variables are used as input to a [parquet dataset](https://arrow.apache.org/docs/python/dataset.html).
* PARQUET_PATH: path to the parquet directory or file
* FEDERATED = '': field name to extend type `Query` with a federated `Table`
* DEBUG = False: run service in debug mode, which includes timing
* COLUMNS = None: list of names, or mapping of aliases, of columns to select
* FILTERS = None: json `filter` query for which rows to read at startup
For more options create a custom [ASGI](https://asgi.readthedocs.io/en/latest/index.html) app. Call graphique's `GraphQL` on an arrow [Dataset](https://arrow.apache.org/docs/python/api/dataset.html), [Scanner](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.Scanner.html), or [Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html). The GraphQL `Table` type will be the root Query type.
Supply a mapping of names to datasets for multiple roots, and to enable federation.
```python
import pyarrow.dataset as ds
from graphique import GraphQL
app = GraphQL(ds.dataset(...)) # Table is root query type
app = GraphQL.federated({<name>: ds.dataset(...), ...}, keys={...}) # Tables on federated fields
```
Start like any ASGI app.
```console
uvicorn <module>:app
```
Configuration options exist to provide a convenient no-code solution, but are subject to change in the future. Using a custom app is recommended for production usage.
### API
#### types
* `Dataset`: interface for an arrow dataset, scanner, or table.
* `Table`: implements the `Dataset` interface. Adds typed `row`, `columns`, and `filter` fields from introspecting the schema.
* `Column`: interface for an arrow column (a.k.a. ChunkedArray). Each arrow data type has a corresponding column implementation: Boolean, Int, Long, Float, Decimal, Date, Datetime, Time, Duration, Base64, String, List, Struct. All columns have a `values` field for their list of scalars. Additional fields vary by type.
* `Row`: scalar fields. Arrow tables are column-oriented, and graphique encourages that usage for performance. A single `row` field is provided for convenience, but a field for a list of rows is not. Requesting parallel columns is far more efficient.
#### selection
* `slice`: contiguous selection of rows
* `filter`: select rows with simple predicates
* `scan`: select rows and project columns with expressions
#### projection
* `columns`: provides a field for every `Column` in the schema
* `column`: access a column of any type by name
* `row`: provides a field for each scalar of a single row
* `apply`: transform columns by applying a function
* `join`: join tables by key columns
#### aggregation
* `group`: group by given columns, transforming the others into list columns
* `partition`: partition on adjacent values in given columns, transforming the others into list columns
* `aggregate`: apply reduce functions to list columns
* `tables`: return a list of tables by splitting on the scalars in list columns
#### ordering
* `sort`: sort table by given columns
* `min`: select rows with smallest values
* `max`: select rows with largest values
### Performance
Graphique relies on native [PyArrow](https://arrow.apache.org/docs/python/index.html) routines wherever possible. Otherwise it falls back to using [NumPy](https://numpy.org/doc/stable/) or custom optimizations.
By default, datasets are read on-demand, with only the necessary rows and columns scanned. Although graphique is a running service, [parquet is performant](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.Dataset.html) at reading a subset of data. Optionally specify `FILTERS` in the json `filter` format to read a subset of rows at startup, trading-off memory for latency. An empty filter (`{}`) will read the whole table.
Specifying `COLUMNS` will limit memory usage when reading at startup (`FILTERS`). There is little speed difference as unused columns are inherently ignored. Optional aliasing can also be used for camel casing.
If index columns are detected in the schema metadata, then an initial `filter` will also attempt a binary search on tables.
## Installation
```console
% pip install graphique[server]
```
## Dependencies
* pyarrow >=12
* strawberry-graphql[asgi,cli]
* uvicorn (or other [ASGI server](https://asgi.readthedocs.io/en/latest/implementations.html))
## Tests
100% branch coverage.
```console
% pytest [--cov]
```
## Changes
1.2
* Pyarrow >=12 required
* Grouping fragments optimized
* Group by empty columns
* Batch sorting and grouping into lists
1.1
* Pyarrow >=11 required
* Python >=3.8 required
* Scannable functions added
* List aggregations deprecated
* Group by fragments
* Month day nano interval array
* `min` and `max` fields memory optimized
1.0
* Pyarrow >=10 required
* Dataset schema introspection
* Dataset scanning with selection and projection
* Binary search on sorted columns
* List aggregation, filtering, and sorting optimizations
* Compute functions generalized
* Multiple datasets and federation
* Provisional dataset `join` and `take`
0.9
* Pyarrow >=9 required
* Multi-directional sorting
* Removed unnecessary interfaces
* Filtering has stricter typing
0.8
* Pyarrow >=8 required
* Grouping and aggregation integrated
* `AbstractTable` interface renamed to `Dataset`
* `Binary` scalar renamed to `Base64`
0.7
* Pyarrow >=7 required
* `FILTERS` use query syntax and trigger reading the dataset
* `FEDERATED` field configuration
* List columns support sorting and filtering
* Group by and aggregate optimizations
* Dataset scanning
0.6
* Pyarrow >=6 required
* Group by optimized and replaced `unique` field
* Dictionary related optimizations
* Null consistency with arrow `count` functions
0.5
* Pyarrow >=5 required
* Stricter validation of inputs
* Columns can be cast to another arrow data type
* Grouping uses large list arrays with 64-bit counts
* Datasets are read on-demand or optionally at startup
0.4
* Pyarrow >=4 required
* `sort` updated to use new native routines
* `partition` tables by adjacent values and differences
* `filter` supports unknown column types using tagged union pattern
* `Groups` replaced with `Table.tables` and `Table.aggregate` fields
* Tagged unions used for `filter`, `apply`, and `partition` functions
0.3
* Pyarrow >=3 required
* `any` and `all` fields
* String column `split` field
0.2
* Pyarrow >= 2 required
* `ListColumn` and `StructColumn` types
* `Groups` type with `aggregate` field
* `group` and `unique` optimized
* Statistical fields: `mode`, `stddev`, `variance`
* `is_in`, `min`, and `max` optimized
%prep
%autosetup -n graphique-1.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-graphique -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2-1
- Package Spec generated
|