1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
%global _empty_manifest_terminate_build 0
Name: python-graspologic
Version: 3.0.0
Release: 1
Summary: A set of python modules for graph statistics
License: MIT
URL: https://github.com/microsoft/graspologic
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/95/0a/ffc73e04cc189ed10b9b97a4cbce1064c7eb1606394e9bba5afd276e051f/graspologic-3.0.0.tar.gz
BuildArch: noarch
%description
<!-- omit in toc -->
# graspologic
[](http://www.jmlr.org/papers/volume20/19-490/19-490.pdf)
[](https://pypi.org/project/graspologic/)
[](https://pepy.tech/project/graspologic)

[](https://opensource.org/licenses/MIT)
## `graspologic` is a package for graph statistical algorithms.
- [Overview](#overview)
- [Documentation](#documentation)
- [System Requirements](#system-requirements)
- [Installation Guide](#installation-guide)
- [Contributing](#contributing)
- [License](#license)
- [Issues](#issues)
- [Citing `graspologic`](#citing-graspologic)
# Overview
A graph, or network, provides a mathematically intuitive representation of data with some sort of relationship between items. For example, a social network can be represented as a graph by considering all participants in the social network as nodes, with connections representing whether each pair of individuals in the network are friends with one another. Naively, one might apply traditional statistical techniques to a graph, which neglects the spatial arrangement of nodes within the network and is not utilizing all of the information present in the graph. In this package, we provide utilities and algorithms designed for the processing and analysis of graphs with specialized graph statistical algorithms.
# Documentation
The official documentation with usage is at https://microsoft.github.io/graspologic/latest
Please visit the [tutorial section](https://microsoft.github.io/graspologic/latest/tutorials/index.html) in the official website for more in depth usage.
# System Requirements
<!-- omit in toc -->
## Hardware requirements
`graspologic` package requires only a standard computer with enough RAM to support the in-memory operations.
<!-- omit in toc -->
## Software requirements
<!-- omit in toc -->
### OS Requirements
`graspologic` is tested on the following OSes:
- Linux x64
- macOS x64
- Windows 10 x64
And across the following **x86_64** versions of Python:
- 3.8
- 3.9
- 3.10
If you try to use `graspologic` for a different platform than the ones listed and notice any unexpected behavior,
please feel free to [raise an issue](https://github.com/microsoft/graspologic/issues/new). It's better for ourselves and our users
if we have concrete examples of things not working!
# Installation Guide
<!-- omit in toc -->
## Install from pip
```
pip install graspologic
```
<!-- omit in toc -->
## Install from Github
```
git clone https://github.com/microsoft/graspologic
cd graspologic
python3 -m venv venv
source venv/bin/activate
python3 setup.py install
```
# Contributing
We welcome contributions from anyone. Please see our [contribution guidelines](https://github.com/microsoft/graspologic/blob/dev/CONTRIBUTING.md) before making a pull request. Our
[issues](https://github.com/microsoft/graspologic/issues) page is full of places we could use help!
If you have an idea for an improvement not listed there, please
[make an issue](https://github.com/microsoft/graspologic/issues/new) first so you can discuss with the developers.
# License
This project is covered under the MIT License.
# Issues
We appreciate detailed bug reports and feature requests (though we appreciate pull requests even more!). Please visit our [issues](https://github.com/microsoft/graspologic/issues) page if you have questions or ideas.
# Citing `graspologic`
If you find `graspologic` useful in your work, please cite the package via the [GraSPy paper](http://www.jmlr.org/papers/volume20/19-490/19-490.pdf)
> Chung, J., Pedigo, B. D., Bridgeford, E. W., Varjavand, B. K., Helm, H. S., & Vogelstein, J. T. (2019). GraSPy: Graph Statistics in Python. Journal of Machine Learning Research, 20(158), 1-7.
%package -n python3-graspologic
Summary: A set of python modules for graph statistics
Provides: python-graspologic
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-graspologic
<!-- omit in toc -->
# graspologic
[](http://www.jmlr.org/papers/volume20/19-490/19-490.pdf)
[](https://pypi.org/project/graspologic/)
[](https://pepy.tech/project/graspologic)

[](https://opensource.org/licenses/MIT)
## `graspologic` is a package for graph statistical algorithms.
- [Overview](#overview)
- [Documentation](#documentation)
- [System Requirements](#system-requirements)
- [Installation Guide](#installation-guide)
- [Contributing](#contributing)
- [License](#license)
- [Issues](#issues)
- [Citing `graspologic`](#citing-graspologic)
# Overview
A graph, or network, provides a mathematically intuitive representation of data with some sort of relationship between items. For example, a social network can be represented as a graph by considering all participants in the social network as nodes, with connections representing whether each pair of individuals in the network are friends with one another. Naively, one might apply traditional statistical techniques to a graph, which neglects the spatial arrangement of nodes within the network and is not utilizing all of the information present in the graph. In this package, we provide utilities and algorithms designed for the processing and analysis of graphs with specialized graph statistical algorithms.
# Documentation
The official documentation with usage is at https://microsoft.github.io/graspologic/latest
Please visit the [tutorial section](https://microsoft.github.io/graspologic/latest/tutorials/index.html) in the official website for more in depth usage.
# System Requirements
<!-- omit in toc -->
## Hardware requirements
`graspologic` package requires only a standard computer with enough RAM to support the in-memory operations.
<!-- omit in toc -->
## Software requirements
<!-- omit in toc -->
### OS Requirements
`graspologic` is tested on the following OSes:
- Linux x64
- macOS x64
- Windows 10 x64
And across the following **x86_64** versions of Python:
- 3.8
- 3.9
- 3.10
If you try to use `graspologic` for a different platform than the ones listed and notice any unexpected behavior,
please feel free to [raise an issue](https://github.com/microsoft/graspologic/issues/new). It's better for ourselves and our users
if we have concrete examples of things not working!
# Installation Guide
<!-- omit in toc -->
## Install from pip
```
pip install graspologic
```
<!-- omit in toc -->
## Install from Github
```
git clone https://github.com/microsoft/graspologic
cd graspologic
python3 -m venv venv
source venv/bin/activate
python3 setup.py install
```
# Contributing
We welcome contributions from anyone. Please see our [contribution guidelines](https://github.com/microsoft/graspologic/blob/dev/CONTRIBUTING.md) before making a pull request. Our
[issues](https://github.com/microsoft/graspologic/issues) page is full of places we could use help!
If you have an idea for an improvement not listed there, please
[make an issue](https://github.com/microsoft/graspologic/issues/new) first so you can discuss with the developers.
# License
This project is covered under the MIT License.
# Issues
We appreciate detailed bug reports and feature requests (though we appreciate pull requests even more!). Please visit our [issues](https://github.com/microsoft/graspologic/issues) page if you have questions or ideas.
# Citing `graspologic`
If you find `graspologic` useful in your work, please cite the package via the [GraSPy paper](http://www.jmlr.org/papers/volume20/19-490/19-490.pdf)
> Chung, J., Pedigo, B. D., Bridgeford, E. W., Varjavand, B. K., Helm, H. S., & Vogelstein, J. T. (2019). GraSPy: Graph Statistics in Python. Journal of Machine Learning Research, 20(158), 1-7.
%package help
Summary: Development documents and examples for graspologic
Provides: python3-graspologic-doc
%description help
<!-- omit in toc -->
# graspologic
[](http://www.jmlr.org/papers/volume20/19-490/19-490.pdf)
[](https://pypi.org/project/graspologic/)
[](https://pepy.tech/project/graspologic)

[](https://opensource.org/licenses/MIT)
## `graspologic` is a package for graph statistical algorithms.
- [Overview](#overview)
- [Documentation](#documentation)
- [System Requirements](#system-requirements)
- [Installation Guide](#installation-guide)
- [Contributing](#contributing)
- [License](#license)
- [Issues](#issues)
- [Citing `graspologic`](#citing-graspologic)
# Overview
A graph, or network, provides a mathematically intuitive representation of data with some sort of relationship between items. For example, a social network can be represented as a graph by considering all participants in the social network as nodes, with connections representing whether each pair of individuals in the network are friends with one another. Naively, one might apply traditional statistical techniques to a graph, which neglects the spatial arrangement of nodes within the network and is not utilizing all of the information present in the graph. In this package, we provide utilities and algorithms designed for the processing and analysis of graphs with specialized graph statistical algorithms.
# Documentation
The official documentation with usage is at https://microsoft.github.io/graspologic/latest
Please visit the [tutorial section](https://microsoft.github.io/graspologic/latest/tutorials/index.html) in the official website for more in depth usage.
# System Requirements
<!-- omit in toc -->
## Hardware requirements
`graspologic` package requires only a standard computer with enough RAM to support the in-memory operations.
<!-- omit in toc -->
## Software requirements
<!-- omit in toc -->
### OS Requirements
`graspologic` is tested on the following OSes:
- Linux x64
- macOS x64
- Windows 10 x64
And across the following **x86_64** versions of Python:
- 3.8
- 3.9
- 3.10
If you try to use `graspologic` for a different platform than the ones listed and notice any unexpected behavior,
please feel free to [raise an issue](https://github.com/microsoft/graspologic/issues/new). It's better for ourselves and our users
if we have concrete examples of things not working!
# Installation Guide
<!-- omit in toc -->
## Install from pip
```
pip install graspologic
```
<!-- omit in toc -->
## Install from Github
```
git clone https://github.com/microsoft/graspologic
cd graspologic
python3 -m venv venv
source venv/bin/activate
python3 setup.py install
```
# Contributing
We welcome contributions from anyone. Please see our [contribution guidelines](https://github.com/microsoft/graspologic/blob/dev/CONTRIBUTING.md) before making a pull request. Our
[issues](https://github.com/microsoft/graspologic/issues) page is full of places we could use help!
If you have an idea for an improvement not listed there, please
[make an issue](https://github.com/microsoft/graspologic/issues/new) first so you can discuss with the developers.
# License
This project is covered under the MIT License.
# Issues
We appreciate detailed bug reports and feature requests (though we appreciate pull requests even more!). Please visit our [issues](https://github.com/microsoft/graspologic/issues) page if you have questions or ideas.
# Citing `graspologic`
If you find `graspologic` useful in your work, please cite the package via the [GraSPy paper](http://www.jmlr.org/papers/volume20/19-490/19-490.pdf)
> Chung, J., Pedigo, B. D., Bridgeford, E. W., Varjavand, B. K., Helm, H. S., & Vogelstein, J. T. (2019). GraSPy: Graph Statistics in Python. Journal of Machine Learning Research, 20(158), 1-7.
%prep
%autosetup -n graspologic-3.0.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-graspologic -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 3.0.0-1
- Package Spec generated
|