1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
|
%global _empty_manifest_terminate_build 0
Name: python-grunnlag
Version: 0.4.22
Release: 1
Summary: Basic Schema for interacting with Arnheim through Bergen
License: CC BY-NC 3.0
URL: https://github.com/jhnnsrs/grunnlag
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/4f/93/80aaee287d5bece4fd2b26318d43a19a3f4333b808cecc5d563eb0046898/grunnlag-0.4.22.tar.gz
BuildArch: noarch
Requires: python3-bergen
Requires: python3-xarray
Requires: python3-zarr
Requires: python3-dask[dataframe,array]
Requires: python3-s3fs
Requires: python3-s3fs
%description
# Grunnlag
### Idea
Grunnlag is a Schema Provider for the Bergen Client accessing your Arnheim Framework
### Prerequisites
Bergen (and in Conclusion Grunnlag) only works with a running Arnheim Instance (in your network or locally for debugging).
### Usage
In order to initialize the Client you need to connect it as a Valid Application with your Arnheim Instance
```python
from bergen import Bergen
client = Bergen(host="p-tnagerl-lab1",
port=8000,
client_id="APPLICATION_ID_FROM_ARNHEIM",
client_secret="APPLICATION_SECRET_FROM_ARNHEIM",
name="karl",
)
```
In your following code you can simple query your data according to the Schema of the Datapoint
Example 1:
```python
from grunnlag.schema import Node
rep = Representation.objects.get(id=1)
print(rep.shape)
```
Access a Representation (Grunnlags Implementation of a 5 Dimensional Array e.g Image Stack, Time Series Photography) and display the dimensions
Example 2:
```python
from grunnlag.schema import Representation, Sample
from bergen.query import TypedGQL
samples = TypedGQL("""
query {
samples(creator: 1){
id
representations(name: "initial", dims: ["x","y","z"]) {
id
store
}
}
}
""", Sample).run({})
for sample in samples:
print(sample.id)
for representation in sample.representations:
print(representation.data.shape)
```
Get all Samples and include the representations if they have the name "initial" and contains the required dimensions. (An automatically documented and browsable Schema can be found at your Arnheim Instance /graphql)
Example 3:
```python
from grunnlag.schema import Representation, Sample
from bergen.query import TypedGQL
import xarray as xr
massive_array = xr.DataArray(da.zeros(1024,1024,100,40,4), dims=["x","y","z","t","c"])
rep = Representation.objects.from_xarray(massive_array, name="massive", sample=1)
```
The Grunnlag Implementation allows for upload of massive arrays do to its reliance on Xarray, dask, and zarr, combined with
S3 Storage on the Backend. Client Data gets compresed and send over to the S3 Storage and automatically added to the system.
(Permissions required!)
Example 4:
```python
from grunnlag.schema import Representation, Sample
from bergen.query import TypedGQL
import xarray as xr
import napari
rep = Representation.objects.get(name="massive", sample=1)
with napari.gui_qt() as gui:
viewer = napari.view_image(rep.data.sel(c=0).data)
```
Combined with Napari that is able to handle dask arrays, data visualization of massive Datasets becomes a breeze as only required chunks are downloaded form the storage backend.
### Testing and Documentation
So far Grunnlad does only provide limitedunit-tests and is in desperate need of documentation,
please beware that you are using an Alpha-Version
### Build with
- [Arnheim](https://github.com/jhnnsrs/arnheim)
- [Pydantic](https://github.com/jhnnsrs/arnheim)
## Roadmap
This is considered pre-Alpha so pretty much everything is still on the roadmap
## Deployment
Contact the Developer before you plan to deploy this App, it is NOT ready for public release
## Versioning
There is not yet a working versioning profile in place, consider non-stable for every release
## Authors
* **Johannes Roos ** - *Initial work* - [jhnnsrs](https://github.com/jhnnsrs)
See also the list of [contributors](https://github.com/your/project/contributors) who participated in this project.
## License
Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
## Acknowledgments
* EVERY single open-source project this library used (the list is too extensive so far)
%package -n python3-grunnlag
Summary: Basic Schema for interacting with Arnheim through Bergen
Provides: python-grunnlag
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-grunnlag
# Grunnlag
### Idea
Grunnlag is a Schema Provider for the Bergen Client accessing your Arnheim Framework
### Prerequisites
Bergen (and in Conclusion Grunnlag) only works with a running Arnheim Instance (in your network or locally for debugging).
### Usage
In order to initialize the Client you need to connect it as a Valid Application with your Arnheim Instance
```python
from bergen import Bergen
client = Bergen(host="p-tnagerl-lab1",
port=8000,
client_id="APPLICATION_ID_FROM_ARNHEIM",
client_secret="APPLICATION_SECRET_FROM_ARNHEIM",
name="karl",
)
```
In your following code you can simple query your data according to the Schema of the Datapoint
Example 1:
```python
from grunnlag.schema import Node
rep = Representation.objects.get(id=1)
print(rep.shape)
```
Access a Representation (Grunnlags Implementation of a 5 Dimensional Array e.g Image Stack, Time Series Photography) and display the dimensions
Example 2:
```python
from grunnlag.schema import Representation, Sample
from bergen.query import TypedGQL
samples = TypedGQL("""
query {
samples(creator: 1){
id
representations(name: "initial", dims: ["x","y","z"]) {
id
store
}
}
}
""", Sample).run({})
for sample in samples:
print(sample.id)
for representation in sample.representations:
print(representation.data.shape)
```
Get all Samples and include the representations if they have the name "initial" and contains the required dimensions. (An automatically documented and browsable Schema can be found at your Arnheim Instance /graphql)
Example 3:
```python
from grunnlag.schema import Representation, Sample
from bergen.query import TypedGQL
import xarray as xr
massive_array = xr.DataArray(da.zeros(1024,1024,100,40,4), dims=["x","y","z","t","c"])
rep = Representation.objects.from_xarray(massive_array, name="massive", sample=1)
```
The Grunnlag Implementation allows for upload of massive arrays do to its reliance on Xarray, dask, and zarr, combined with
S3 Storage on the Backend. Client Data gets compresed and send over to the S3 Storage and automatically added to the system.
(Permissions required!)
Example 4:
```python
from grunnlag.schema import Representation, Sample
from bergen.query import TypedGQL
import xarray as xr
import napari
rep = Representation.objects.get(name="massive", sample=1)
with napari.gui_qt() as gui:
viewer = napari.view_image(rep.data.sel(c=0).data)
```
Combined with Napari that is able to handle dask arrays, data visualization of massive Datasets becomes a breeze as only required chunks are downloaded form the storage backend.
### Testing and Documentation
So far Grunnlad does only provide limitedunit-tests and is in desperate need of documentation,
please beware that you are using an Alpha-Version
### Build with
- [Arnheim](https://github.com/jhnnsrs/arnheim)
- [Pydantic](https://github.com/jhnnsrs/arnheim)
## Roadmap
This is considered pre-Alpha so pretty much everything is still on the roadmap
## Deployment
Contact the Developer before you plan to deploy this App, it is NOT ready for public release
## Versioning
There is not yet a working versioning profile in place, consider non-stable for every release
## Authors
* **Johannes Roos ** - *Initial work* - [jhnnsrs](https://github.com/jhnnsrs)
See also the list of [contributors](https://github.com/your/project/contributors) who participated in this project.
## License
Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
## Acknowledgments
* EVERY single open-source project this library used (the list is too extensive so far)
%package help
Summary: Development documents and examples for grunnlag
Provides: python3-grunnlag-doc
%description help
# Grunnlag
### Idea
Grunnlag is a Schema Provider for the Bergen Client accessing your Arnheim Framework
### Prerequisites
Bergen (and in Conclusion Grunnlag) only works with a running Arnheim Instance (in your network or locally for debugging).
### Usage
In order to initialize the Client you need to connect it as a Valid Application with your Arnheim Instance
```python
from bergen import Bergen
client = Bergen(host="p-tnagerl-lab1",
port=8000,
client_id="APPLICATION_ID_FROM_ARNHEIM",
client_secret="APPLICATION_SECRET_FROM_ARNHEIM",
name="karl",
)
```
In your following code you can simple query your data according to the Schema of the Datapoint
Example 1:
```python
from grunnlag.schema import Node
rep = Representation.objects.get(id=1)
print(rep.shape)
```
Access a Representation (Grunnlags Implementation of a 5 Dimensional Array e.g Image Stack, Time Series Photography) and display the dimensions
Example 2:
```python
from grunnlag.schema import Representation, Sample
from bergen.query import TypedGQL
samples = TypedGQL("""
query {
samples(creator: 1){
id
representations(name: "initial", dims: ["x","y","z"]) {
id
store
}
}
}
""", Sample).run({})
for sample in samples:
print(sample.id)
for representation in sample.representations:
print(representation.data.shape)
```
Get all Samples and include the representations if they have the name "initial" and contains the required dimensions. (An automatically documented and browsable Schema can be found at your Arnheim Instance /graphql)
Example 3:
```python
from grunnlag.schema import Representation, Sample
from bergen.query import TypedGQL
import xarray as xr
massive_array = xr.DataArray(da.zeros(1024,1024,100,40,4), dims=["x","y","z","t","c"])
rep = Representation.objects.from_xarray(massive_array, name="massive", sample=1)
```
The Grunnlag Implementation allows for upload of massive arrays do to its reliance on Xarray, dask, and zarr, combined with
S3 Storage on the Backend. Client Data gets compresed and send over to the S3 Storage and automatically added to the system.
(Permissions required!)
Example 4:
```python
from grunnlag.schema import Representation, Sample
from bergen.query import TypedGQL
import xarray as xr
import napari
rep = Representation.objects.get(name="massive", sample=1)
with napari.gui_qt() as gui:
viewer = napari.view_image(rep.data.sel(c=0).data)
```
Combined with Napari that is able to handle dask arrays, data visualization of massive Datasets becomes a breeze as only required chunks are downloaded form the storage backend.
### Testing and Documentation
So far Grunnlad does only provide limitedunit-tests and is in desperate need of documentation,
please beware that you are using an Alpha-Version
### Build with
- [Arnheim](https://github.com/jhnnsrs/arnheim)
- [Pydantic](https://github.com/jhnnsrs/arnheim)
## Roadmap
This is considered pre-Alpha so pretty much everything is still on the roadmap
## Deployment
Contact the Developer before you plan to deploy this App, it is NOT ready for public release
## Versioning
There is not yet a working versioning profile in place, consider non-stable for every release
## Authors
* **Johannes Roos ** - *Initial work* - [jhnnsrs](https://github.com/jhnnsrs)
See also the list of [contributors](https://github.com/your/project/contributors) who participated in this project.
## License
Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
## Acknowledgments
* EVERY single open-source project this library used (the list is too extensive so far)
%prep
%autosetup -n grunnlag-0.4.22
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-grunnlag -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.22-1
- Package Spec generated
|