diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-15 08:45:57 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-15 08:45:57 +0000 |
| commit | dce5d3c754dfd27db60e76244946d614b526529e (patch) | |
| tree | 9b4bd5b02e2e12c971cbc57c8b54b5c2c62c9bac /python-gym-contin.spec | |
| parent | 7af2bfdb77aca9e68132e3f78c813306de664116 (diff) | |
automatic import of python-gym-contin
Diffstat (limited to 'python-gym-contin.spec')
| -rw-r--r-- | python-gym-contin.spec | 193 |
1 files changed, 193 insertions, 0 deletions
diff --git a/python-gym-contin.spec b/python-gym-contin.spec new file mode 100644 index 0000000..0af6ef4 --- /dev/null +++ b/python-gym-contin.spec @@ -0,0 +1,193 @@ +%global _empty_manifest_terminate_build 0 +Name: python-gym-contin +Version: 1.5.0 +Release: 1 +Summary: A OpenAI Gym Env for continuous actions +License: MIT +URL: https://pypi.org/project/gym-contin/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/db/f9/4e01859a5d158f2bd94de2dcedecf801aa7095d8af2494179fca39fc5ee1/gym_contin-1.5.0.tar.gz +BuildArch: noarch + +Requires: python3-gym + +%description +# Gym-style API + +The domain features a continuos state and a dicrete action space. + +The environment initializes: +- cross-sectional dataset with variables X_a, X_s, Y and N observations; +- logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2; + +The agent: +- sees a patient (sample observation); +- predict his risk of admission \rho, using initialized parameters +- if \rho < 1/2: + - do not intervene on X_a, which stays the same +- else: + - sample an action a in [0,1] + - compute g(a, X_a) = newX_a + - intervene on X_a by updating it to newX_a +- give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values + +(shouldn't I fit a new logit-link? parameters are now diff?) + + +# To install +- git clone https://github.com/claudia-viaro/gym-contin.git +- cd gym-contin + +- !pip install gym-contin +- import gym +- import gym_contin +- env =gym.make('contin-v0') + +# To change version +- change version to, e.g., 1.0.7 from setup.py file +- git clone https://github.com/claudia-viaro/gym-contin.git +- cd gym-contin +- python setup.py sdist bdist_wheel +- twine check dist/* +- twine upload --repository-url https://upload.pypi.org/legacy/ dist/* + + + + +%package -n python3-gym-contin +Summary: A OpenAI Gym Env for continuous actions +Provides: python-gym-contin +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-gym-contin +# Gym-style API + +The domain features a continuos state and a dicrete action space. + +The environment initializes: +- cross-sectional dataset with variables X_a, X_s, Y and N observations; +- logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2; + +The agent: +- sees a patient (sample observation); +- predict his risk of admission \rho, using initialized parameters +- if \rho < 1/2: + - do not intervene on X_a, which stays the same +- else: + - sample an action a in [0,1] + - compute g(a, X_a) = newX_a + - intervene on X_a by updating it to newX_a +- give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values + +(shouldn't I fit a new logit-link? parameters are now diff?) + + +# To install +- git clone https://github.com/claudia-viaro/gym-contin.git +- cd gym-contin + +- !pip install gym-contin +- import gym +- import gym_contin +- env =gym.make('contin-v0') + +# To change version +- change version to, e.g., 1.0.7 from setup.py file +- git clone https://github.com/claudia-viaro/gym-contin.git +- cd gym-contin +- python setup.py sdist bdist_wheel +- twine check dist/* +- twine upload --repository-url https://upload.pypi.org/legacy/ dist/* + + + + +%package help +Summary: Development documents and examples for gym-contin +Provides: python3-gym-contin-doc +%description help +# Gym-style API + +The domain features a continuos state and a dicrete action space. + +The environment initializes: +- cross-sectional dataset with variables X_a, X_s, Y and N observations; +- logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2; + +The agent: +- sees a patient (sample observation); +- predict his risk of admission \rho, using initialized parameters +- if \rho < 1/2: + - do not intervene on X_a, which stays the same +- else: + - sample an action a in [0,1] + - compute g(a, X_a) = newX_a + - intervene on X_a by updating it to newX_a +- give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values + +(shouldn't I fit a new logit-link? parameters are now diff?) + + +# To install +- git clone https://github.com/claudia-viaro/gym-contin.git +- cd gym-contin + +- !pip install gym-contin +- import gym +- import gym_contin +- env =gym.make('contin-v0') + +# To change version +- change version to, e.g., 1.0.7 from setup.py file +- git clone https://github.com/claudia-viaro/gym-contin.git +- cd gym-contin +- python setup.py sdist bdist_wheel +- twine check dist/* +- twine upload --repository-url https://upload.pypi.org/legacy/ dist/* + + + + +%prep +%autosetup -n gym-contin-1.5.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-gym-contin -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 1.5.0-1 +- Package Spec generated |
