1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
%global _empty_manifest_terminate_build 0
Name: python-gym-contin
Version: 1.5.0
Release: 1
Summary: A OpenAI Gym Env for continuous actions
License: MIT
URL: https://pypi.org/project/gym-contin/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/db/f9/4e01859a5d158f2bd94de2dcedecf801aa7095d8af2494179fca39fc5ee1/gym_contin-1.5.0.tar.gz
BuildArch: noarch
Requires: python3-gym
%description
# Gym-style API
The domain features a continuos state and a dicrete action space.
The environment initializes:
- cross-sectional dataset with variables X_a, X_s, Y and N observations;
- logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2;
The agent:
- sees a patient (sample observation);
- predict his risk of admission \rho, using initialized parameters
- if \rho < 1/2:
- do not intervene on X_a, which stays the same
- else:
- sample an action a in [0,1]
- compute g(a, X_a) = newX_a
- intervene on X_a by updating it to newX_a
- give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values
(shouldn't I fit a new logit-link? parameters are now diff?)
# To install
- git clone https://github.com/claudia-viaro/gym-contin.git
- cd gym-contin
- !pip install gym-contin
- import gym
- import gym_contin
- env =gym.make('contin-v0')
# To change version
- change version to, e.g., 1.0.7 from setup.py file
- git clone https://github.com/claudia-viaro/gym-contin.git
- cd gym-contin
- python setup.py sdist bdist_wheel
- twine check dist/*
- twine upload --repository-url https://upload.pypi.org/legacy/ dist/*
%package -n python3-gym-contin
Summary: A OpenAI Gym Env for continuous actions
Provides: python-gym-contin
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-gym-contin
# Gym-style API
The domain features a continuos state and a dicrete action space.
The environment initializes:
- cross-sectional dataset with variables X_a, X_s, Y and N observations;
- logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2;
The agent:
- sees a patient (sample observation);
- predict his risk of admission \rho, using initialized parameters
- if \rho < 1/2:
- do not intervene on X_a, which stays the same
- else:
- sample an action a in [0,1]
- compute g(a, X_a) = newX_a
- intervene on X_a by updating it to newX_a
- give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values
(shouldn't I fit a new logit-link? parameters are now diff?)
# To install
- git clone https://github.com/claudia-viaro/gym-contin.git
- cd gym-contin
- !pip install gym-contin
- import gym
- import gym_contin
- env =gym.make('contin-v0')
# To change version
- change version to, e.g., 1.0.7 from setup.py file
- git clone https://github.com/claudia-viaro/gym-contin.git
- cd gym-contin
- python setup.py sdist bdist_wheel
- twine check dist/*
- twine upload --repository-url https://upload.pypi.org/legacy/ dist/*
%package help
Summary: Development documents and examples for gym-contin
Provides: python3-gym-contin-doc
%description help
# Gym-style API
The domain features a continuos state and a dicrete action space.
The environment initializes:
- cross-sectional dataset with variables X_a, X_s, Y and N observations;
- logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2;
The agent:
- sees a patient (sample observation);
- predict his risk of admission \rho, using initialized parameters
- if \rho < 1/2:
- do not intervene on X_a, which stays the same
- else:
- sample an action a in [0,1]
- compute g(a, X_a) = newX_a
- intervene on X_a by updating it to newX_a
- give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values
(shouldn't I fit a new logit-link? parameters are now diff?)
# To install
- git clone https://github.com/claudia-viaro/gym-contin.git
- cd gym-contin
- !pip install gym-contin
- import gym
- import gym_contin
- env =gym.make('contin-v0')
# To change version
- change version to, e.g., 1.0.7 from setup.py file
- git clone https://github.com/claudia-viaro/gym-contin.git
- cd gym-contin
- python setup.py sdist bdist_wheel
- twine check dist/*
- twine upload --repository-url https://upload.pypi.org/legacy/ dist/*
%prep
%autosetup -n gym-contin-1.5.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-gym-contin -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 1.5.0-1
- Package Spec generated
|