summaryrefslogtreecommitdiff
path: root/python-gym-discrete.spec
blob: 100a2929251057380cf848489d4277ad967c1c68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
%global _empty_manifest_terminate_build 0
Name:		python-gym-discrete
Version:	1.5.6
Release:	1
Summary:	A OpenAI Gym Env for discrete
License:	MIT
URL:		https://pypi.org/project/gym-discrete/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/73/45/0d3abf89b2522e1266da6048491349b8a0714b88b6755605383dc18b8e6e/gym_discrete-1.5.6.tar.gz
BuildArch:	noarch

Requires:	python3-gym

%description
# Gym-style API

The domanin features a continuos state and a dicrete action space.

The environment initializes:
- cross-sectional dataset with variables X_a, X_s, Y and N observations;
- logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2;

The agent: 
- sees all patients;
- predict risk of admission \rho, using initialized parameters
- sample an action (50 possible values between -2 and 2)
- if risk > 0.2:
  - replace Xa by g, where g(\rho, Xa) is obtained using the patient's risk and Xa value
- else:
  - do not intervene, X_a stays the same
- give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values


# To install
- git clone https://github.com/claudia-viaro/gym-discrete.git
- cd gym-discrete

- !pip install gym-discrete
- import gym_discrete
- env =gym.make('discrete-v0')

# To change version
- change version to, e.g., 1.0.7 from setup.py file
- git clone https://github.com/claudia-viaro/gym-discrete.git
- cd gym-discrete
- python setup.py sdist bdist_wheel
- twine check dist/*
- twine upload --repository-url https://upload.pypi.org/legacy/ dist/*




%package -n python3-gym-discrete
Summary:	A OpenAI Gym Env for discrete
Provides:	python-gym-discrete
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-gym-discrete
# Gym-style API

The domanin features a continuos state and a dicrete action space.

The environment initializes:
- cross-sectional dataset with variables X_a, X_s, Y and N observations;
- logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2;

The agent: 
- sees all patients;
- predict risk of admission \rho, using initialized parameters
- sample an action (50 possible values between -2 and 2)
- if risk > 0.2:
  - replace Xa by g, where g(\rho, Xa) is obtained using the patient's risk and Xa value
- else:
  - do not intervene, X_a stays the same
- give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values


# To install
- git clone https://github.com/claudia-viaro/gym-discrete.git
- cd gym-discrete

- !pip install gym-discrete
- import gym_discrete
- env =gym.make('discrete-v0')

# To change version
- change version to, e.g., 1.0.7 from setup.py file
- git clone https://github.com/claudia-viaro/gym-discrete.git
- cd gym-discrete
- python setup.py sdist bdist_wheel
- twine check dist/*
- twine upload --repository-url https://upload.pypi.org/legacy/ dist/*




%package help
Summary:	Development documents and examples for gym-discrete
Provides:	python3-gym-discrete-doc
%description help
# Gym-style API

The domanin features a continuos state and a dicrete action space.

The environment initializes:
- cross-sectional dataset with variables X_a, X_s, Y and N observations;
- logit model fitted on the dataset, retrieving parameters \theta_0, \theta_1, \theta_2;

The agent: 
- sees all patients;
- predict risk of admission \rho, using initialized parameters
- sample an action (50 possible values between -2 and 2)
- if risk > 0.2:
  - replace Xa by g, where g(\rho, Xa) is obtained using the patient's risk and Xa value
- else:
  - do not intervene, X_a stays the same
- give reward equal to average risk of admission, using predicted Y, initial parameters and sampled values


# To install
- git clone https://github.com/claudia-viaro/gym-discrete.git
- cd gym-discrete

- !pip install gym-discrete
- import gym_discrete
- env =gym.make('discrete-v0')

# To change version
- change version to, e.g., 1.0.7 from setup.py file
- git clone https://github.com/claudia-viaro/gym-discrete.git
- cd gym-discrete
- python setup.py sdist bdist_wheel
- twine check dist/*
- twine upload --repository-url https://upload.pypi.org/legacy/ dist/*




%prep
%autosetup -n gym_discrete-1.5.6

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-gym-discrete -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.5.6-1
- Package Spec generated